精英家教网 > 高中数学 > 题目详情

【题目】已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈( ),则sinx0的值为(
A.
B.
C.
D.

【答案】A
【解析】解:由函数的图象可得A=5,且 = ,解得ω=1 再由五点法作图可得 1 +φ= ,解得 φ=
故函数的解析式为 f(x)=5sin(x+ ).
再由f (x0)=3,x0∈( ),可得 5sin(1x0+ )=3,
解得 sin(x0+ )= ,故有cos(x0+ )=﹣
sinx0 =sin[(x0+ )﹣ ]=sin(x0+ )cos ﹣cos(x0+ )sin = ﹣(﹣ )=
故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直三棱柱ABC﹣A1B1C1的底面为正三角形,E,F分别是A1C1 , B1C1上的点,且满足A1E=EC1 , B1F=3FC1
(1)求证:平面AEF⊥平面BB1C1C;
(2)设直三棱柱ABC﹣A1B1C1的棱长均相等,求二面角C1﹣AE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在处获悉后,立即测出该渔船在方位角(从指北方向顺时针转到目标方向线的水平角)为,距离为15海里的处,并测得渔船正沿方位角为的方向,以15海里/小时的速度向小岛靠拢,我海军舰艇立即以海里/小时的速度前去营救,求舰艇靠近渔船所需的最少时间和舰艇的航向.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店对新引进的商品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

定价(元)

9

9.2

9.4

9.6

9.8

10

销量件)

100

94

93

90

85

78

(1)求回归直线方程

(2)假设今后销售依然服从(Ⅰ)中的关系,且该商品金价为每件5元,为获得最大利润,商店应该如何定价?(利润=销售收入-成本)

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种水果的单个质量在500g以上视为特等品.随机抽取1000个该水果,结果有50个特等品.将这50个水果的质量数据分组,得到下边的频率分布表.

(1)估计该水果的质量不少于560g的概率;
(2)若在某批水果的检测中,发现有15个特等品,据此估计该批水果中没有达到特等品的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个 列联表;
(2)判断性别与休闲方式是否有关系.

0.05

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成 六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:

(1)求分数内的频率,并补全这个频率分布直方图;

(2)从频率分布直方图中,估计本次考试成绩的中位数;

(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产100件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为500件,产品销售数量为 件时,销售所得的收入为 万元.
(1)该公司这种产品的年生产量为 件,生产并销售这种产品所得到的利润关于当年产量 的函数为 ,求
(2)当该公司的年产量为多少件时,当年所获得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点P的直角坐标为(1,2),点M的极坐标为 ,若直线l过点P,且倾斜角为 ,圆C以M为圆心,3为半径.
(Ⅰ)求直线l的参数方程和圆C的极坐标方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|PA||PB|.

查看答案和解析>>

同步练习册答案