精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD,PA⊥底面ABCD,ABCD,AB⊥AD,AB=AD=
1
2
CD=2,PA=2,M,E,F分别是PA,PC,PD的中点.
(1)证明:EF平面PAB;
(2)证明:PD⊥平面ABEF;
(3)求直线ME与平面ABEF所成角的正弦值.
(1)证明:∵E、F分别是PC、PD的中点,∴EFCD,
∵ABCD,
∴ABEF,
∵EF?平面PAB,AB?平面PAB,
∴EF平面PAB;
(2)证明:∵PA⊥底面ABCD,AB?底面ABCD,
∴PA⊥AB,
∵AB⊥AD,PA∩AD=A,
∴AB⊥平面PAD,
∵ABEF,
∴EF⊥平面PAD,
∴EF⊥PD,
∵PA=AD=2,F是PD的中点,
∴PD⊥AF,
∵EF∩AF=F,
∴PD⊥平面ABEF;
(3)由(2)知,P到平面ABEF的距离为
2
,∴M到平面ABEF的距离为
2
2

又MF=1,EF=2,∴ME=
5

∴直线ME与平面ABEF所成角的正弦值为
2
2
5
=
10
10
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2.
(1)求证:SA⊥CD;
(2)求异面直线SB与CD所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正三棱柱ABC-A1B1C1中,AB=AA1,则AC1与平面BB1C1C所成的角的正弦值为(  )
A.
2
2
B.
15
5
C.
6
4
D.
6
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P-ABC中,∠ACB=90°,PA⊥底面ABC.
(I)求证:平面PAC⊥平面PBC;
(II)若AC=BC=PA,M是PB的中点,求AM与平面PBC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.求证:
(1)C1O面A1B1D1
(2)A1C⊥面AB1D1
(3)求直线AC与平面AB1D1所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体ABCD-A1B1C1D1直线AD1与平面A1C1的夹角为(  )
A.30°B.45°C.90°D.60°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在正方体ABCD-A1B1C1D1中,E为DD1上的点、F为DB的中点.
(Ⅰ)求直线B1F与平面CDD1C1所成角的正弦值;
(Ⅱ)若直线EF平面ABC1D1,试确定点E的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为
3
3
,M是AC的中点,则EM,DE所成角的余弦值等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四面体A-BCD的四个面全等,且AB=AC=2
3
,BC=4,则以BC为棱,以面BCD与面BCA为面的二面角的大小为(  )
A.arccos
1
3
B.arccos
3
3
C.
π
2
D.
3

查看答案和解析>>

同步练习册答案