精英家教网 > 高中数学 > 题目详情
已知各项都是正数的等差数列{an},Sn是它的前n项和,若a2+a3+a7=a24,则a5•S5的最大值是
 
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:利用a2+a3+a7=a42,可得a1=3-3d,进而a5•S5=a5•S5=(a1+4d)(5a1+10d)=5(3+d)(3-d)=5(9-d2),即可求出a5•S5的最大值.
解答: 解:由题意,设公差为d,则3a1+9d=(a1+3d)2
∴a1=3-3d,
∴a5•S5=a5•S5=(a1+4d)(5a1+10d)=5(3+d)(3-d)=5(9-d2)≤45,
∴a5•S5的最大值是45,
故答案为:45.
点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,cos∠A1DD1=
DD1
DA1
=
3
10
10
,DBB1,∠A1DD1是AB1的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求二面角DO的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=
1
4
x2,下列描述正确的是(  )
A、开口向右,焦点为(1,0)
B、开口向上,焦点为(0,
1
16
C、开口向右,准线为x=-1
D、开口向上,准线为y=-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两直线y=2x与x+y+a=0相交于点A(1,b),则点A到直线ax+by+3=0的距离为(  )
A、
2
13
13
B、
4
13
13
C、4
D、
18
13
13

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的有
 

(1)函数y=f(1+x)与y=f(1-x)图象关于x=0对称;
(2)把函数y=f(-3x)按向量
a
=(
1
3
,0)平移后得到新函数y=f(1-3x);
(3)若函数y=f(3x+1)图象关于x=1对称,则y=f(1+x)图象关于x=
1
3
对称;
(4)若对任意x∈R有f(1+x)=f(x-1)成立,则f(x)的图象关于x=1对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=
3
3
x的倾斜角为(  )
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+bln(x+1),其中b≠0.
(1)当b=1时,求曲线y=f(x)在点(0,0)处的切线方程;
(2)讨论函数f(x)的单调性;
(3)当n∈N*,且n≥2时证明不等式:ln[(
1
2
+1)(
1
3
+1)…(
1
n
+1)]+
1
23
+
1
33
+…+
1
n3
1
2
-
1
n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=(x-2)(x-m)是定义在R上的偶函数,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前9项和S9=18,则a1+a3+a11=
 

查看答案和解析>>

同步练习册答案