精英家教网 > 高中数学 > 题目详情
将正方形ABCD沿对角线BD折成直二面角ABDC,有如下四个结论:
ACBD;     ②△ACD是等边三角形;
AB与平面BCD成60°的角;   ④ABCD所成的角是60°.
其中正确结论的序号是________.
①②④

试题分析:①取BD的中点O,连接OA,OC,所以,所以平面OAC,所以ACBD;②设正方形的边长为a,则在直角三角形ACO中,可以求得OC=a,
所以△ACD是等边三角形;③AB与平面BCD成45角;④分别取BCAC的中点为MN,连接MENEMN.则MNAB,且MNABaMECD,且MECDa,∴∠EMN是异面直线ABCD所成的角.在Rt△AEC中,AECEaACa,∴NEACa.∴△MEN是正三角形,∴∠EMN=60°,故④正确.
点评:解决此类折叠问题,关键是搞清楚折叠前后的变量和不变的量.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E, F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.

(Ⅰ)求证:EF//平面PAD;
(Ⅱ)求三棱锥C—PBD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知长方体ABCD—A1B1ClD1内接于球O,底面ABCD是边长为2的正方形,E为AA1的中点,OA⊥平面BDE,则球O的表面积为
A.8B.16:C.14D.18

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α–l-β的平面角为45°,有两条异面直线a,b分别垂直于平面,则异面直线所成角的大小是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是均以为斜边的等腰直角三角形,分别为的中点,的中点,且平面.

(1)证明:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 是双曲线 上一点,分别是双曲线的左、右顶点,直线的斜率之积为.

(1)求双曲线的离心率;
(2)过双曲线的右焦点且斜率为1的直线交双曲线于两点,为坐标原点,为双曲线上一点,满足,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求D、C之间的距离;
(2) 求CD与面ABC所成的角的大小;
(3) 求证:对于AD上任意点H,CH不与面ABD垂直。

查看答案和解析>>

同步练习册答案