精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)R上的奇函数,当x0时,解析式为f(x).

(1)f(x)R上的解析式;

(2)用定义证明f(x)(0,+∞)上为减函数.

【答案】(1) f(x) (2)见解析

【解析】试题分析:(1)分别求出当x<0x=0时的解析式,写成分段函数的形式;(2)x1x2∈(0,+∞),且x1x2通过作差证明f(x1)>f(x2)即可

试题解析:(1)x<0,则-x>0,

f(-x)=.

又∵f(x)是R上的奇函数,

f(-x)=-f(x)=

f(x)=.

又∵奇函数在x=0时有意义,

f(0)=0,

∴函数的解析式为f(x)=

(2)证明:设x1x2∈(0,+∞),且x1x2

f(x1)-f(x2)=

.

x1x2∈(0,+∞),x1x2

x1+1>0,x2+1>0,x2x1>0,

f(x1)-f(x2)>0,

f(x1)>f(x2),

∴函数f(x)在(0,+∞)上为减函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知圆

⑴若圆的半径为2,圆 轴相切且与圆外切,求圆的标准方程;

⑵若过原点的直线与圆相交于 两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面为等腰梯形, , 垂足为是四棱锥的高,中点,设

(1)证明:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零点,则a=( )
A.﹣
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是方程的两根,数列是递增的等差数列,数列的前项和为,且.

1)求数列的通项公式;

2)记,求数列的前.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣1﹣alnx.
(Ⅰ)若 f(x)≥0,求a的值;
(Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)lg(axbx)(a>1>b>0).

(1)f(x)的定义域;

(2)f(x)(1,+∞)上递增且恒取正值ab满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若为奇函数,求的值;

(2)试判断内的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游爱好者计划从3个亚洲国家A1A2A33个欧洲国家B1B2B3中选择2个国家去旅游.

(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;

(2)若从亚洲国家和欧洲国家中各选1个,求这两个国家包括A1,但不包括B1的概率.

查看答案和解析>>

同步练习册答案