精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的可导函数f(x)的导函数f′(x),满足f′(x)<f(x),且f(x+2)=f(x﹣2),f(4)=1,则不等式f(x)<ex的解集为(
A.(0,+∞)
B.(1,+∞)
C.(4,+∞)
D.(﹣2,+∞)

【答案】A
【解析】解:可设函数g(x)=

g′(x)=

由f′(x)<f(x),

可得g′(x)<0,即有g(x)在R上递减,

f(x+2)=f(x﹣2),f(4)=1,

可得f(0)=f(4)=1,g(0)= =1,

由f(x)<ex即为 <1,

可得g(x)<g(0),

由g(x)在R上递减,

可得x>0.

则所求不等式的解集为(0,+∞).

故选:A.

可设函数g(x)= ,求出导数,判断g(x)的单调性,由f(x+2)=f(x﹣2),f(4)=1,可得f(0),g(0),原不等式转化为g(x)<g(0),由单调性,即可得到所求解集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2 , 过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 为参数),A,B是C上的动点,且满足OA⊥OB(O为坐标原点),以原点O为极点,x轴的正半轴为极轴建立坐标系,点D的极坐标为
(1)求线段AD的中点M的轨迹E的普通方程;
(2)利用椭圆C的极坐标方程证明 为定值,并求△AOB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,BD是正方形ABCD的对角线,弧的圆心是A,半径为AB,正方形ABCD以AB为轴旋转,求图中Ⅰ,Ⅱ,Ⅲ三部分旋转所得旋转体的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测量中得到的A样本数据如下:82848486868688888888若样本B数据恰好是样本A数据都加上2后所得数据AB两样本的下列数字特征对应相同的是(  )

A. 众数 B. 平均数

C. 中位数 D. 标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数,ω>0,|φ|<)的一个零点与之相邻的对称轴之间的距离为,且fx)有最小值.

(1)求的解析式;

(2)若,求fx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(-x-1)=f(x-1),其图象过点(0,1),且与x轴有唯一交点。

(1)f(x)的解析式;

(2)设函数g(x)=f(x)-(2+a)x,求g(x)[1,2]上的最小值h(a)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=ln(1+x)﹣x﹣ax2
(1)当x=1时,f(x)取到极值,求a的值;
(2)当a满足什么条件时,f(x)在区间 上有单调递增的区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点. (Ⅰ)证明:PB∥平面AEC;
(Ⅱ)若底面ABCD为正方形, ,求二面角C﹣AF﹣D大小.

查看答案和解析>>

同步练习册答案