精英家教网 > 高中数学 > 题目详情

【题目】对于函数,若存在实数对,使得等式对定义域中的任意都成立,则称函数型函数”.

1)若型函数,且,求满足条件的实数对

2)已知函数.函数型函数,对应的实数对,当时,.若对任意时,都存在,使得,求实数的值.

【答案】1;(2

【解析】

1)解方程,即得解;(2)等价于上的值域是上的值域的子集,等价于对任意,都有.再利用型函数求解.

解:(1)因为型函数

所以存在实数对使得等式成立,即

代入,可得,即.

所以满条件的实数对为.

2)因为对任意时,都存在,使得

所以上的值域是上的值域的子集.

因为时,

则对任意,都有.

因为型函数,且对应的实数对为,所以.

时,,则只需满足对任意

都有成立.

即对任意,都有即可,

即不等式对任意恒成立且.

时,时满足条件;

时,,满足条件;

时,该不等式等价于.

时,恒成立,

时,恒成立,

因为上单调递增,所以.

综上可得,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,部分对应值如下表,的导函数的图象如图所示。

X

-1

0

2

4

5

f(x)

1

2

0

2

1

下列关于函数的命题:

①函数是减函数;

②如果当时,的最大值是2,那么t的最大值为4;③函数有4个零点,则

其中真命题的个数是( )

A. 3个 B. 2个 C. 1个 D. 0个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆上的点到它的两个焦的距离之和为,以椭圆的短轴为直径的圆经过这两个焦点,点 分别是椭圆的左、右顶点.

)求圆和椭圆的方程.

)已知 分别是椭圆和圆上的动点( 位于轴两侧),且直线轴平行,直线 分别与轴交于点 .求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线.

1)若直线与圆交于不同的两点,当时,求的值;

2)若是直线上的动点,过作圆的两条切线,切点为,探究:直线是否过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新零售模式的背景下,某大型零售公司推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.x表示在各区开设分店的个数,y表示这个x个分店的年收入之和.

(1)该公司已经过初步判断,可用线性回归模型拟合yx的关系,求y关于x的线性回归方程

(2)假设该公司在A区获得的总年利润z(单位:百万元)xy之间的关系为,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?

(参考公式:,其中)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数的图象, 只需将函数的图象(

A. 所有点的横坐标伸长到原来的2(纵坐标不变), 再将所得的图像向左平移个单位.

B. 所有点的横坐标伸长到原来的2(纵坐标不变), 再将所得的图像向左平移个单位.

C. 所有点的横坐标缩短到原来的(纵坐标不变), 再将所得的图像向左平移个单位.

D. 所有点的横坐标缩短到原来的(纵坐标不变), 再将所得的图像向左平移个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求该函数的最大值;

2)是否存在实数,使得该函数在闭区间上的最大值为?若存在,求出对应的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图,在三棱锥P—ABC中,PC⊥底面ABCAB⊥BCDE分别是ABPB的中点.

)求证:DE∥平面PAC

)求证:AB⊥PB

)若PCBC,求二面角P—AB—C的大小.

查看答案和解析>>

同步练习册答案