【题目】某比赛为甲、乙两名运动员制订下列发球规则:规则一:投掷一枚硬币,出现正面向上,甲发球,否则乙发球;规则二:从装有个红球与个黑球的布袋中随机地取出个球,如果同色,甲发球,否则乙发球;规则三:从装有个红球与个黑球的布袋中随机地取出个球,如果同色,甲发球,否则乙发球.
其中对甲、乙公平的规则是( )
A.规则一和规则二B.规则一和规则三C.规则二和规则三D.规则二
【答案】B
【解析】
计算出三种规则下甲发球和乙发球的概率,当两人发球的概率均为时,该规则对甲、乙公平,由此可得出正确选项.
对于规则一,每人发球的机率都是,是公平的;
对于规则二,记个红球分别为红,红,个黑球分别为黑、黑,
则随机取出个球的所有可能的情况有(红,红),(红,黑),(红,黑),(红,黑),(红,黑),(黑,黑),共种,其中同色的情况有种,
所以甲发球的可能性为,不公平;
对于规则三,记个红球分别为红、红、红,则随机取出个球所有可能的情况有(红,红),(红,红),(红,黑),(红,红),(红,黑),(红,黑),共种,其中同色的情况有种,所以两人发球的可能性均为,是公平的.
因此,对甲、乙公平的规则是规则一和规则三.
故选:B.
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn,公比q>0,S2=2a2-2,S3=a4-2,数列{an}满足a2=4b1,nbn+1-(n+1)bn=n2+n,(n∈N*).
(1)求数列{an}的通项公式;
(2)证明数列{}为等差数列;
(3)设数列{cn}的通项公式为:Cn=,其前n项和为Tn,求T2n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点在椭圆上,为坐标原点,直线的斜率与直线的斜率乘积为.
(1)求椭圆的方程;
(2)不经过点的直线(且)与椭圆交于,两点,关于原点的对称点为(与点不重合),直线,与轴分别交于两点,,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知点,过点作直线、与圆:和抛物线:都相切.
(1)求抛物线的两切线的方程;
(2)设抛物线的焦点为,过点的直线与抛物线相交于、两点,与抛物线的准线交于点(其中点靠近点),且,求与的面积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,为梯形,,,,,,.
(1)在线段上有一个动点,满足且平面,求实数的值;
(2)已知与的交点为,若,且平面,求二面角平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是边长为2的菱形,,,平面平面,点为棱的中点.
(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;
(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com