精英家教网 > 高中数学 > 题目详情
19.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1与直线y=2x有公共点与y=3x没有公共点,则双曲线的离心率的取值范围为(  )
A.($\sqrt{5}$,$\sqrt{10}$]B.(1,$\sqrt{10}$]C.(1,$\sqrt{5}$]D.[$\sqrt{5}$,+∞)

分析 可设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)与直线y=2x有交点,应有$\frac{b}{a}$>2,再联立直线y=3x,由于没有交点,则$\frac{b}{a}$≤3,可得e的范围.

解答 解:设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的渐近线方程为y=±$\frac{b}{a}$x,
双曲线与直线y=2x有交点,
则有$\frac{b}{a}$>2,
又双曲线与直线y=3x没有公共点,
则有$\frac{b}{a}$≤3,
即有2<$\frac{b}{a}$≤3,
即有2<$\frac{\sqrt{{c}^{2}-{a}^{2}}}{a}$≤3,即2<$\sqrt{{e}^{2}-1}$≤3,
解得$\sqrt{5}$<e≤$\sqrt{10}$.
故选A.

点评 本题考查了双曲线的渐近线和离心率,直线与双曲线相交等问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.把函数f(x)=sin2x的图象上所有点向左平行移动$\frac{π}{6}$个单位长度后,得到函数y=g(x)的图象,下列关于y=g(x)的说法正确的是(  )
A.y=g(x)的图象关于点(-$\frac{π}{3}$,0)中心对称B.y=g(x)的图象关于x=-$\frac{π}{6}$轴对称
C.y=g(x)在区间[-$\frac{5π}{12}$,-$\frac{π}{6}$]单调递增D.y=g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
API[0.50](0,100](100,150](150,200](200,250](250,300]>300
空气质量轻微污染轻度污染中度污染中度重污染重度污染
天数413183091115
记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为ω.在区间[0,100]对企业没有造成经济损失;在区间∴F对企业造成经济损失成直线模型(当API为150时造成的经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的 经济损失为2000元;
(1)试写出S(ω)的表达式:
(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过900元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
附:
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$
非重度污染重度污染合计
供暖季
非供暖季
合计100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,△PAD为边长为2的等边三角形,ABCD为菱形,∠DAB=60°,E为AD的中点,平面PAD⊥平面ABCD,F为棱PC上一点,
(1)证明:平面PAD⊥平面BEF;
(2)若PA∥平面BEF,求三棱锥E-BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知曲线Ω:Ax2+By2+Cxy=1(A,B,C为常数),有下列命题:
①若A=B,则曲线Ω关于直线y=x对称;  ②若C≠0,则曲线Ω一定是一条封闭曲线;
③若C=0,则存在A,B,使过点(0,1)与曲线Ω有且只有一个交点的直线有4条;
④若C=0,则直线x+y+m=0与曲线Ω相交弦的中点轨迹可能是直线.
其中的正确命题是①③④(填上你认为正确的所有命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f1(x)=$\frac{1}{2}$x2,f2(x)=alnx(其中a>0).
(1)求函数f(x)=f1(x)-f2(x)的极值;
(2)若函数g(x)=f1(x)-f2(x)+(a-1)x在区间($\frac{1}{e}$,e)内有两个零点,求正实数a取值范围;
(3)求证:当x>0时,lnx+$\frac{3}{4{x}^{2}}$-$\frac{1}{{e}^{x}}$>0.(说明:e是自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.tan300°+$\frac{cos(-405°)}{sin750°}$的值为$\sqrt{2}-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和Sn 满足:Sn=(-1)n+1n,求an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线x2=4y上的动点P在x轴上的射影为点M,点A(3,2),则|PA|+|PM|的最小值为$\sqrt{10}$-1.

查看答案和解析>>

同步练习册答案