精英家教网 > 高中数学 > 题目详情
(2013•浙江模拟)如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点F2与抛物线y2=4x的焦点重合,过F2作与x轴垂直的直线l与椭圆交于S、T两点,与抛物线交于C、D两点,且
|CD|
|ST|
=2
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆E相交于两点A,B,设P为椭圆E上一点,且满足
OA
+
OB
=t
OP
(O为坐标原点),当|
PA
-
PB
|<
2
5
3
时,求实数t的取值范围.
分析:(Ⅰ)由抛物线方程,得焦点坐标,从而设出椭圆E的方程,解方程组
y2=4x
x=1
得C(1,2),D(1,-2),根据抛物线、椭圆都关于x轴对称,建立关于参数b的方程
1
b2+1
+
1
2b2
=1
,解得b2=1并推得a2=2.最后写出椭圆的方程.
(Ⅱ)由题意知直AB的斜率存在.AB:y=k(x-2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得k值取值范围,再结合向量的坐标运算利用点P在椭圆上,建立k与t的关系式,利用函数的单调性求出实数t取值范围,从而解决问题
解答:解:(Ⅰ)由抛物线方程,得焦点F2(1,0).
所以椭圆E的方程为:
x2
b2+1
+
y2
b2
=1

解方程组
y2=4x
x=1
得C(1,2),D(1,-2).
由于抛物线、椭圆都关于x轴对称,
|F2C|
|F2S|
=
|CD|
|ST|
=2
2
|F2S|=
2
2
,∴S(1,
2
2
)

因此,
1
b2+1
+
1
2b2
=1
,解得b2=1并推得a2=2.
故椭圆的方程为
x2
2
+y2=1

(Ⅱ)由题意知直AB的斜率存在.
AB:y=k(x-2),设A(x1,y1),B(x2,y2),P(x,y)
代入椭圆方程,得(1+2k2)x2-8k2x+8k2-2=0,
△=64k4-4(2k2+1)(8k2-2)>0,k2
1
2

∴x1x2=
8k2-2
1+2k2
,x1+x2=
8k2
1+2k2

|
PA
-
PB
|<
2
5
3

1+k2
|x 1-x 2|<
2
5
3

∴(1+k2)[
(8k2) 2
(1+2k2) 2
-4×
8k2-2
1+2k2
]<
20
9

∴(4k2-1)(14k2+13)>0,
∴k2
1
4

1
4
<k2
1
2

∵满足
OA
+
OB
=t
OP

∴(x1+x2,y1+y2)=t(x,y),
∴x=
x1+x2
t
=
8k 2
t(1+2k 2)
,y=
y1+y2
t
=
-4k
t(1+2k 2)

∵点P在椭圆上,
[
8k 2
t(1+2k 2)
] 2+2[
-4k
t(1+2k 2)
 2=2

∴16k2=t2(1+2k2
∴t2=
16k 2
1+2k 2
=8- 
8
1+2k 2
,由于
1
4
<k2
1
2

∴-2<t<-
2
6
3
2
6
3
<t<2
∴实数t取值范围为:-2<t<-
2
6
3
2
6
3
<t<2.
点评:本小题主要考查函数单调性的应用、椭圆的简单性质、直线与圆锥曲线的综合问题、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浙江模拟)函数f(x)=Asin(ωx+φ)(A>0,ω>),|φ|<
π
2
)的部分图象如图示,则将y=f(x)的图象向右平移
π
6
个单位后,得到的图象解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知C=
π3

(Ⅰ)若a=2,b=3,求△ABC的外接圆的面积;
(Ⅱ)若c=2,sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)一个口袋中装有2个白球和3个红球,每次从袋中摸出两个球,若摸出的两个球颜色相同为中奖,否则为不中奖,则中奖的概率为
2
5
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若|
AB
|=a,|
AD
|=b,则
AC
BD
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浙江模拟)已知sin(
π
4
-x)=
3
4
,且x∈(-
π
2
,-
π
4
)
,则cos2x的值为
-
3
7
8
-
3
7
8

查看答案和解析>>

同步练习册答案