精英家教网 > 高中数学 > 题目详情

【题目】已知直线l极坐标方程ρcosθ﹣ρsinθ+3=0,圆M的极坐标方程为ρ=4sinθ.以极点为原点,极轴为x轴建立直角坐标系(1)写出直线l与圆M的直角标方程;

(2)设直线l与圆M交于A、B两点,求AB的长.

【答案】(1)x﹣y+3=0,x2+(y﹣2)2=4.

(2).

【解析】

(1)利用把极坐标方程化为直角坐标方程.
(2)圆的圆心为(0,2),半径等于2,圆心到直线的距离,利用弦长公式求得 的值.

(1)∵直线l极坐标方程ρcosθ﹣ρsinθ+3=0,∴直角坐标方程为 x﹣y+3=0.

∵圆M的极坐标方程为ρ=4sinθ,故其直角坐标方程为 x2+(y﹣2)2=4.

(2)圆M的圆心为(0,2),半径等于2,圆心到直线的距离 d==

∴AB=2=2 =

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:

其中=1,2,3,4,5,6,7.

(1)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;

(2)求线性回归方程;(结果保留到小数点后两位)

(参考数据:=3 245, =25, =15.43, =5 075)

(3)预测进店人数为80人时,商品销售的件数.(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中.己知直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)直线l与曲线C相交于A、B两点,求∠AOB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n三位递增数”(137,359,567).

在某次数学趣味活动中,每位参加者需从所有的三位递增数中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的三位递增数的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.

(1)写出所有个位数字是5三位递增数”;

(2)若甲参加活动,求甲得分X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在班级活动中,4名男生和3名女生站成一排表演节目:(写出必要的数学式,结果用数字作答)

(1)三名女生不能相邻,有多少种不同的站法?

(2)四名男生相邻有多少种不同的排法?

(3)女生甲不能站在左端,女生乙不能站在右端,有多少种不同的排法?

(4)甲乙丙三人按高低从左到右有多少种不同的排法?(甲乙丙三位同学身高互不相等)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y满足约束条件 ,目标函数z=ax+by(a>0,b>0)的最大值M,若M的取值范围是[1,2],则点M(a,b)所经过的区域面积=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)经过点P(﹣2,0)与点(1,1).
(1)求椭圆的方程;
(2)过P点作两条互相垂直的直线PA,PB,交椭圆于A,B.
①证明直线AB经过定点;
②求△ABP面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,命题:实数满足不等式;命题:实数满足不等式,若的充分不必要条件,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= lnxx,其中a>0.

(1)f(x)(0,+∞)上存在极值点,求a的取值范围;

(2)a(1,e],当x1(0,1),x2(1,+∞)时,记f(x2)-f(x1)的最大值为M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案