精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
4
+
y2
3
=1
,过椭圆的右焦点F的直线l与椭圆交于点A、B,定直线x=4交x轴于点K,直线KA和直线KB的斜率分别是k1、k2
(1)若直线l的倾斜角是45°,求线段AB的长;
(2)求证:k1+k2=0.
(1)直线l的方程是y=x-1,代入椭圆方程整理得:7x2-8x-8=0
设A(x1,y1),B(x2,y2),则x1+x2=
8
7
,x1x2=-
8
7
.…2分
|AB|=
1+k2
•|x1-x2|=
2
(
8
7
)2+
32
7
=
24
7
.…5分
(2)证明:当l⊥x轴时,由椭圆的对称性易知k1+k2=0;…6分
当l不与x轴垂直时,设其方程是:y=k(x-1)代入椭圆方程整理得:(3+4k2)x2-8k2x+4k2-12=0,易知其判别式△>0恒成立,
设A(x1,y1),B(x2,y2),则x1+x2=
8k2
3+4k2
,x1x2=
4k2-12
3+4k2
.…9分
而K(4,0)
则k1+k2=
y1
x1-4
+
y2
x2-4
=
x1y2+y1x2-4(y1+y2)
(x1-4)(x2-4)
=
k[2x1xx-5(x1+x2)+8]
(x1-4)(x2-4)
=0
即k1+k2=0
综上总有k1+k2=0.…13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设抛物线y2=8x的准线与x轴交于点Q,若过Q点的直线l与抛物线有公共点,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:
x2
4
+
y2
m
=1(0<m<4)的左顶点为A,M是椭圆C上异于点A的任意一点,点P与点A关于点M对称.
(1)若点P的坐标为(4,3),求m的值;
(2)若椭圆C上存在点M,使得OP⊥OM,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
4
+
y2
3
=1
,直线l过点M(m,0).
(Ⅰ)若直线l交y轴于点N,当m=-1时,MN中点恰在椭圆C上,求直线l的方程;
(Ⅱ)如图,若直线l交椭圆C于A,B两点,当m=-4时,在x轴上是否存在点p,使得△PAB为等边三角形?若存在,求出点p坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=8x,O为坐标原点,动直线l:y=k(x+2)与抛物线C交于不同两点A,B
(1)求证:
OA
OB
为常数;
(2)求满足
OM
=
OA
+
OB
的点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1(-1,0)、F2(1,0),O是坐标原点,C的右顶点和上顶点分别为A、B,且△AOB的面积为
5

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(4,0)作与x轴不重合的直线l与C交于相异两点M、N,交y轴于Q点,证明
|PQ|
|PM|
+
|PQ|
|PN|
为定值,并求这个定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C:
x2
m+2
+
y2
3-m
=1
(m∈R).
(Ⅰ)若曲线C是焦点在x轴上的椭圆,求m的取值范围;
(Ⅱ)设m=2,过点D(0,4)的直线l与曲线C交于M,N两点,O为坐标原点,若∠OMN为直角,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆M:
x2
a2
+
y2
b2
=1(a>b>0)
经过如下五个点中的三个点:P1(-1,-
2
2
)
,P2(0,1),P3(
1
2
2
2
)
P4(1,
2
2
)
,P5(1,1).
(Ⅰ)求椭圆M的方程;
(Ⅱ)设点A为椭圆M的左顶点,B,C为椭圆M上不同于点A的两点,若原点在△ABC的外部,且△ABC为直角三角形,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
,直线l:y=x+2与原点为圆心,以椭圆C的短轴长为直径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点M(0,2)的直线l1与椭圆C交于G,H两点.设直线l1的斜率k>0,在x轴上是否存在点P(m,0),使得△PGH是以GH为底边的等腰三角形.如果存在,求出实数m的取值范围,如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案