ÒÑÖªÊýÁÐ{bn}£¬Èô´æÔÚÕýÕûÊýT£¬¶ÔÒ»ÇÐn¡ÊN*¶¼ÓÐbn+r=bn£¬Ôò³ÆÊýÁÐ{bn}ΪÖÜÆÚÊýÁУ¬TÊÇËüµÄÒ»¸öÖÜÆÚ£®ÀýÈ磺
ÊýÁÐa£¬a£¬a£¬a£¬¡­¢Ù¿É¿´×÷ÖÜÆÚΪ1µÄÊýÁУ»
ÊýÁÐa£¬b£¬a£¬b£¬¡­¢Ú¿É¿´×÷ÖÜÆÚΪ2µÄÊýÁУ»
ÊýÁÐa£¬b£¬c£¬a£¬b£¬c£¬¡­¢Û¿É¿´×÷ÖÜÆÚΪ3µÄÊýÁС­
£¨1£©¶ÔÓÚÊýÁТڣ¬ËüµÄÒ»¸öͨÏʽ¿ÉÒÔÊÇ£¬ÊÔÔÙд³ö¸ÃÊýÁеÄÒ»¸öͨÏʽ£»
£¨2£©ÇóÊýÁТ۵ÄÇ°nÏîºÍSn£»
£¨3£©ÔÚÊýÁТÛÖУ¬Èôa=2£¬b=£¬c=-1£¬ÇÒËüÓÐÒ»¸öÐÎÈçbn=Asin£¨¦Øn+¦Õ£©+BµÄͨÏʽ£¬ÆäÖÐA¡¢B¡¢¦Ø¡¢¦Õ¾ùΪʵÊý£¬A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼£¬Çó¸ÃÊýÁеÄÒ»¸öͨÏʽbn£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¸ù¾ÝÊýÁÐa£¬b£¬a£¬b£¬¡­¿É¿´×÷ÖÜÆÚΪ2µÄÊýÁУ¬¿Éд³öÊýÁеÄͨÏ
£¨2£©ÊýÁÐa£¬b£¬c£¬a£¬b£¬c£¬¡­¿É¿´×÷ÖÜÆÚΪ3µÄÊýÁУ¬¹Ê¿É·ÖÀàµÃ³ö½áÂÛ£»
£¨3£©ÓÉÌâÒ⣬¦Ø£¾0£¬Ó¦ÓУ¬µÃ¦Ø=£¬ÓÚÊÇbn=Asin£¨n+¦Õ£©+B£¬°Ñb1=2£¬b2=£¬b3=-1£¬´úÈëÉÏʽ£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð£º½â£º£¨1£©¡ßÊýÁÐa£¬b£¬a£¬b£¬¡­¿É¿´×÷ÖÜÆÚΪ2µÄÊýÁУ»
¡àan=µÈ£®£¨3·Ö£©
£¨2£©ÊýÁÐa£¬b£¬c£¬a£¬b£¬c£¬¡­¿É¿´×÷ÖÜÆÚΪ3µÄÊýÁУ¬ËùÒÔµ±n=3k+1ʱ£¬£»£¨5·Ö£©
µ±n=3k+2ʱ£¬£»£¨7·Ö£©
µ±n=3k+3ʱ£¬£¨k¡ÊN£©£®£¨9·Ö£©
£¨3£©ÓÉÌâÒ⣬¦Ø£¾0£¬Ó¦ÓУ¬µÃ¦Ø=£¬£¨10·Ö£©
ÓÚÊÇbn=Asin£¨n+¦Õ£©+B£¬
°Ñb1=2£¬b2=£¬b3=-1£¬´úÈëÉÏʽµÃ£¨12·Ö£©
ÓÉ£¨1£©£¨2£©¿ÉµÃAcos¦Õ=£¬ÔÙ´úÈ루1£©µÄÕ¹¿ªÊ½£¬¿ÉµÃ-¦Õ+B=£¬Ó루3£©ÁªÁ¢µÃB=£¬£¨13·Ö£©
Asin¦Õ=-£¬ÓÚÊÇtan¦Õ=-
ÒòΪ|¦Õ|£¼£¬ËùÒÔ¦Õ=-£¬£¨14·Ö£©
ÓÚÊÇ¿ÉÇóµÃA=£®£¨15·Ö£©
¹Êbn=sin£¨£©+£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓëÈý½Çº¯ÊýµÄ×ۺϣ¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÓÐÒ»¶¨ÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýy=f£¨x£©£¨x¡ÊD£©£¬·½³Ìf£¨x£©=xµÄ¸ùx0³ÆΪº¯Êýf£¨x£©µÄ²»¶¯µã£»Èôa1¡ÊD£¬an+1=f£¨an£©£¨n¡ÊN*£©£¬Ôò³Æ{an} ΪÓɺ¯Êýf£¨x£©µ¼³öµÄÊýÁУ®
É躯Êýg£¨x£©=
4x+2
x+3
£¬h£¨x£©=
ax+b
cx+d
(c¡Ù0£¬ad-bc¡Ù0£¬(d-a)2+4bc£¾0)

£¨1£©Çóº¯Êýg£¨x£©µÄ²»¶¯µãx1£¬x2£»
£¨2£©Éèa1=3£¬{an} ÊÇÓɺ¯Êýg£¨x£©µ¼³öµÄÊýÁУ¬¶Ô£¨1£©ÖеÄÁ½¸ö²»¶¯µãx1£¬x2£¨²»·ÁÉèx1£¼x2£©£¬ÊýÁÐÇóÖ¤{
an-x1
an-x2
}
ÊǵȱÈÊýÁУ¬²¢Çó
lim
n¡ú¡Þ
an
£»
£¨3£©ÊÔ̽¾¿Óɺ¯Êýh£¨x£©µ¼³öµÄÊýÁÐ{bn}£¬£¨ÆäÖÐb1=p£©ÎªÖÜÆÚÊýÁеijäÒªÌõ¼þ£®
×¢£ºÒÑÖªÊýÁÐ{bn}£¬Èô´æÔÚÕýÕûÊýT£¬¶ÔÒ»ÇÐn¡ÊN*¶¼ÓÐbn+T=bn£¬Ôò³ÆÊýÁÐ{bn} ΪÖÜÆÚÊýÁУ¬TÊÇËüµÄÒ»¸öÖÜÆÚ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•Â¬ÍåÇøһģ£©ÒÑÖªÊýÁÐ{bn}£¬Èô´æÔÚÕýÕûÊýT£¬¶ÔÒ»ÇÐn¡ÊN*¶¼ÓÐbn+r=bn£¬Ôò³ÆÊýÁÐ{bn}ΪÖÜÆÚÊýÁУ¬TÊÇËüµÄÒ»¸öÖÜÆÚ£®ÀýÈ磺
ÊýÁÐa£¬a£¬a£¬a£¬¡­¢Ù¿É¿´×÷ÖÜÆÚΪ1µÄÊýÁУ»
ÊýÁÐa£¬b£¬a£¬b£¬¡­¢Ú¿É¿´×÷ÖÜÆÚΪ2µÄÊýÁУ»
ÊýÁÐa£¬b£¬c£¬a£¬b£¬c£¬¡­¢Û¿É¿´×÷ÖÜÆÚΪ3µÄÊýÁС­
£¨1£©¶ÔÓÚÊýÁТڣ¬ËüµÄÒ»¸öͨÏʽ¿ÉÒÔÊÇan =
a   nΪÕýÆæÊý
b    nΪÕýżÊý
£¬ÊÔÔÙд³ö¸ÃÊýÁеÄÒ»¸öͨÏʽ£»
£¨2£©ÇóÊýÁТ۵ÄÇ°nÏîºÍSn£»
£¨3£©ÔÚÊýÁТÛÖУ¬Èôa=2£¬b=
1
2
£¬c=-1£¬ÇÒËüÓÐÒ»¸öÐÎÈçbn=Asin£¨¦Øn+¦Õ£©+BµÄͨÏʽ£¬ÆäÖÐA¡¢B¡¢¦Ø¡¢¦Õ¾ùΪʵÊý£¬A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
¦Ð
2
£¬Çó¸ÃÊýÁеÄÒ»¸öͨÏʽbn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÊýÁÐ{bn}£¬Èô´æÔÚÕýÕûÊýT£¬¶ÔÒ»ÇÐn¡ÊN*¶¼ÓÐbn+r=bn£¬Ôò³ÆÊýÁÐ{bn}ΪÖÜÆÚÊýÁУ¬TÊÇËüµÄÒ»¸öÖÜÆÚ£®ÀýÈ磺
ÊýÁÐa£¬a£¬a£¬a£¬¡­¢Ù¿É¿´×÷ÖÜÆÚΪ1µÄÊýÁУ»
ÊýÁÐa£¬b£¬a£¬b£¬¡­¢Ú¿É¿´×÷ÖÜÆÚΪ2µÄÊýÁУ»
ÊýÁÐa£¬b£¬c£¬a£¬b£¬c£¬¡­¢Û¿É¿´×÷ÖÜÆÚΪ3µÄÊýÁС­
£¨1£©¶ÔÓÚÊýÁТڣ¬ËüµÄÒ»¸öͨÏʽ¿ÉÒÔÊÇÊýѧ¹«Ê½£¬ÊÔÔÙд³ö¸ÃÊýÁеÄÒ»¸öͨÏʽ£»
£¨2£©ÇóÊýÁТ۵ÄÇ°nÏîºÍSn£»
£¨3£©ÔÚÊýÁТÛÖУ¬Èôa=2£¬b=Êýѧ¹«Ê½£¬c=-1£¬ÇÒËüÓÐÒ»¸öÐÎÈçbn=Asin£¨¦Øn+¦Õ£©+BµÄͨÏʽ£¬ÆäÖÐA¡¢B¡¢¦Ø¡¢¦Õ¾ùΪʵÊý£¬A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼Êýѧ¹«Ê½£¬Çó¸ÃÊýÁеÄÒ»¸öͨÏʽbn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýy=f£¨x£©£¨x¡ÊD£©£¬·½³Ìf£¨x£©=xµÄ¸ùx0³ÆΪº¯Êýf£¨x£©µÄ²»¶¯µã£»Èôa1¡ÊD£¬an+1=f£¨an£©£¨n¡ÊN*£©£¬Ôò³Æ{an} ΪÓɺ¯Êýf£¨x£©µ¼³öµÄÊýÁУ®
É躯Êýg£¨x£©=
4x+2
x+3
£¬h£¨x£©=
ax+b
cx+d
(c¡Ù0£¬ad-bc¡Ù0£¬(d-a)2+4bc£¾0)

£¨1£©Çóº¯Êýg£¨x£©µÄ²»¶¯µãx1£¬x2£»
£¨2£©Éèa1=3£¬{an} ÊÇÓɺ¯Êýg£¨x£©µ¼³öµÄÊýÁУ¬¶Ô£¨1£©ÖеÄÁ½¸ö²»¶¯µãx1£¬x2£¨²»·ÁÉèx1£¼x2£©£¬ÊýÁÐÇóÖ¤{
an-x1
an-x2
}
ÊǵȱÈÊýÁУ¬²¢Çó
lim
n¡ú¡Þ
an
£»
£¨3£©ÊÔ̽¾¿Óɺ¯Êýh£¨x£©µ¼³öµÄÊýÁÐ{bn}£¬£¨ÆäÖÐb1=p£©ÎªÖÜÆÚÊýÁеijäÒªÌõ¼þ£®
×¢£ºÒÑÖªÊýÁÐ{bn}£¬Èô´æÔÚÕýÕûÊýT£¬¶ÔÒ»ÇÐn¡ÊN*¶¼ÓÐbn+T=bn£¬Ôò³ÆÊýÁÐ{bn} ΪÖÜÆÚÊýÁУ¬TÊÇËüµÄÒ»¸öÖÜÆÚ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸