精英家教网 > 高中数学 > 题目详情

【题目】数列{an}是以a为首项,q为公比的等比数列,数列{bn}满足bn=1+a1+a2+…+an(n=1,2,…),数列{cn}满足cn=2+b1+b2+…+bn(n=1,2,…).若{cn}为等比数列,则a+q=(
A.
B.3
C.
D.6

【答案】B
【解析】解:数列{an}是以a为首项,q为公比的等比数列,an=aqn﹣1 , 则bn=1+a1+a2+…+an=1+ =1+
则cn=2+b1+b2+…+bn=2+(1+ )n﹣ × =2﹣ + n+
要使{cn}为等比数列,则 ,解得:
∴a+q=3,
故选B.
由题意求得数列{bn}的通项公式,代入即可求得数列{cn}的通项公式,根据等比数列通项公式的性质,即可求得a和q的值,求得a+q的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“抛物线 的准线方程为 ”是“抛物线 的焦点与双曲线 的焦点重合”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y∈R,且 ,则存在θ∈R,使得xcosθ+ysinθ+1=0成立的P(x,y)构成的区域面积为(
A.4
B.4
C.
D. +

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆 经过点 ,并且与圆 相切.
(1)求点P的轨迹C的方程;
(2)设 为轨迹C内的一个动点,过点 且斜率为 的直线 交轨迹C于A,B两点,当k为何值时? 是与m无关的定值,并求出该值定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且以两焦点为直径的圆的内接正方形面积为2.
(1)求椭圆 的标准方程;
(2)若直线 与椭圆 相交于 两点,在 轴上是否存在点 ,使直线 的斜率之和 为定值?若存在,求出点 坐标及该定值,若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知偶函数f(x)在区间(-∞,0]上单调递减,则满足f(2x-1)< 的x的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a·2x+b·3x , 其中常数a,b满足ab≠0.
(1)若ab>0,判断函数f(x)的单调性;
(2)若ab<0,求f(x+1)>f(x)时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P为△ABC内一点,且满足 ,记△ABP,△BCP,△ACP的面积依次为S1 , S2 , S3 , 则S1:S2:S3等于(
A.1:2:3
B.1:4:9
C.2:3:1
D.3:1:2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,直线 的斜率之积为 .
(Ⅰ)求顶点 的轨迹方程
(Ⅱ)设动直线 ,点 关于直线 的对称点为 ,且 点在曲线 上,求 的取值范围.

查看答案和解析>>

同步练习册答案