精英家教网 > 高中数学 > 题目详情

【题目】抛物线的焦点为,准线为,若为抛物线上第一象限的一动点,过的垂线交准线于点,交抛物线于两点.

(Ⅰ)求证:直线与抛物线相切;

(Ⅱ)若点满足,求此时点的坐标.

【答案】(I)证明见解析;(Ⅱ).

【解析】

(Ⅰ)设,由此可得直线的斜率,进而得到直线的斜率,由此得到的方程为,令可得点的坐标,于是可得直线的斜率.然后再由导数的几何意义得到在点A处的切线的斜率,比较后可得结论.(Ⅱ)由(Ⅰ)知,直线的方程为,将直线方程与椭圆方程联立消元后得到二次方程,结合根与系数的关系及可求得点A的坐标.

(Ⅰ)由题意得焦点.设

∴直线的斜率为

由已知直线斜率存在,且直线的方程为

,得

∴点的坐标为

∴直线的斜率为

,即抛物线在点A处的切线的斜率为

∴直线与抛物线相切.

(Ⅱ)由(Ⅰ)知,直线的方程为

消去整理得

由题意得直线的斜率为

直线的斜率为

整理得

解得

,且

∴存在,使得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底,为实常数.

1)当时,求函数的单调区间;

2)当时,求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三角形ABE与菱形ABCD所在的平面互相垂直,MAB的中点.

1)求证:;

2)求二面角的余弦值;

3)在线段EC上是否存在点P,使得直线AP与平面ABE所成的角为,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆 是圆M内一个定点,P是圆上任意一点,线段PN的垂直平分线l和半径MP相交于点Q,当点P在圆M上运动时,点Q的轨迹为曲线E

1)求曲线E的方程;

2)过点D(03)作直线m与曲线E交于AB两点,点C满足 (O为原点),求四边形OACB面积的最大值,并求此时直线m的方程;

3)已知抛物线上,是否存在直线与曲线E交于GH,使得GH的中点F落在直线y=2x上,并且与抛物线相切,若直线存在,求出直线的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一项针对都市熟男(三线以上城市,岁男性)消费水平的调查显示,对于最近一年内是否购买过以下七类高价商品,全体被调查者,以及其中包括的1980年及以后出生(80后)被调查者,1980年以前出生(80前)被调查者回答“是”的比例分别如下:

全体被调查者

80后被调查者

80前被调查者

电子产品

56.9%

66.0%

48.5%

服装

23.0%

24.9%

21.2%

手表

14.3%

19.4%

9.7%

运动、户外用品

10.4%

11.1%

9.7%

珠宝首饰

8.6%

10.8%

6.5%

箱包

8.1%

11.3%

5.1%

个护与化妆品

6.6%

6.0%

7.2%

以上皆无

25.3%

17.9%

32.1%

根据表格中数据判断,以下分析错误的是( )

A. 都市熟男购买比例最高的高价商品是电子产品

B. 从整体上看,80后购买高价商品的意愿高于80前

C. 80前超过3成一年内从未购买过表格中七类高价商品

D. 被调查的都市熟男中80后人数与80前人数的比例大约为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)解不等式:

(Ⅱ)已知,若对任意的,不等式恒成立,求正数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,且.

1)求证:

2)在线段,是否存在一点,使得二面角的大小为,如果存在,与平面所成角的正弦值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为0.

(1)求椭圆的方程;

(2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,四点中恰有三点在椭圆上.

(I)求椭圆的标准方程;

(Ⅱ)过的右焦点作斜率为的直线交于两点,直线轴交于点为线段的中点,过点作直线于点.证明:三点共线.

查看答案和解析>>

同步练习册答案