精英家教网 > 高中数学 > 题目详情
a=1是直线(3a+2)x+(1-4a)y+8=0和(5a-2)x+(a+4)y-7=0互相垂直的(  )
A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也非必要条件
分析:利用两条直线垂直与斜率的关系即可判断出.
解答:解:①当a=1时,两条直线(3a+2)x+(1-4a)y+8=0和(5a-2)x+(a+4)y-7=0分别化为:
5x-3y+8=0,3x+5y-7=0,
可得两条直线的斜率分别为:k1=
5
3
k2=-
3
5
,则k1•k2=-1.
故两条直线相互垂直.
因此a=1是直线(3a+2)x+(1-4a)y+8=0和(5a-2)x+(a+4)y-7=0互相垂直的充分条件.
②若两条直线(3a+2)x+(1-4a)y+8=0和(5a-2)x+(a+4)y-7=0互相垂直,
当1-4a=0即a=
1
4
时,两条直线分别化为11x+32=0,3x-17y+28=0,此时两条直线不垂直;
同理当a=-4时,两条直线不垂直;
a≠
1
4
且a≠-4时,两条直线的斜率分别为-
3a+2
1-4a
-
5a-2
a+4

-
3a+2
1-4a
×(-
5a-2
a+4
)
=-1,
解得a=0或1.
a=1是直线(3a+2)x+(1-4a)y+8=0和(5a-2)x+(a+4)y-7=0互相垂直的不必要条件.
综上可知:a=1是直线(3a+2)x+(1-4a)y+8=0和(5a-2)x+(a+4)y-7=0互相垂直的充分不必要条件.
故选:A.
点评:本题考查了两条直线垂直与斜率的关系、充分必要条件,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

a=3是直线ax+2y+3a=0与直线3x+(a-1)y=a-7平行的(  )
A、充分非必要条件B、必要非充分条件C、充要条件D、非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题中正确的是(  )
A、若x∈R且x≠0,则x+
1
x
≥2恒成立
B、在△ABC中,若sin2A=sin2B,则△ABC是等腰三角形
C、对等差数列{an}的前n项和Sn,若对任意正整数n都有Sn+1>Sn,则an+1>an对任意正整数n恒成立
D、a=3是直线ax+2y+3a=0与直线3x+(a-1)y=a-7平行且不重合的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①命题“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;
②线性相关系数r的绝对值越接近于1,表明两个变量线性相关程度越强;
③若n?a,m∥n,则m∥a;
④“a=
25
”是“直线ax+2y+3a=0与直线3x+(a-1)y+7-a=0相互垂直”的充要条件.
其中真命题的序号是
 
.(请填上所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

3、“a=2”是“直线ax+2y+3a=0与直线(a+1)x-3y+4=0垂直”的(  )

查看答案和解析>>

同步练习册答案