【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),以为极点, 轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的极坐标方程;
(2)设直线与曲线相交于两点,求的值.
【答案】(1)曲线的极坐标方程为: ;(2)6.
【解析】试题分析:(1)先根据三角函数平方关系消参数得曲线的普通方程,再根据化为极坐标方程;(2)将直线l的极坐标方程代入曲线的极坐标方程得,再根据求的值.
试题解析:解:(1)将方程消去参数得,
∴曲线的普通方程为,
将代入上式可得,
∴曲线的极坐标方程为: . -
(2)设两点的极坐标方程分别为,
由消去得,
根据题意可得是方程的两根,
∴,
∴.
【题型】解答题
【结束】
23
【题目】选修4—5:不等式选讲
已知函数.
(1)当时,求关于x的不等式的解集;
(2)若关于x的不等式有解,求a的取值范围.
科目:高中数学 来源: 题型:
【题目】已知抛物线E:的焦点为F,是抛物线E上一点,且.
1求抛物线E的标准方程;
2设点B是抛物线E上异于点A的任意一点,直线AB与直线交于点P,过点P作x轴的垂线交抛物线E于点M,设直线BM的方程为,k,b均为实数,请用k的代数式表示b,并说明直线BM过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】通过随机询问100名性别不同的大学生是否爱好踢毽子,得到如下的列联表:
随机变量经计算,统计量K2的观测值k0≈4.762,参照附表,得到的正确结论是( )
A. 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”
B. 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”
C. 有97.5%以上的把握认为“爱好该项运动与性别有关”
D. 有97.5%以上的把握认为“爱好该项运动与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xcos+a,a∈R.
(I)求曲线y=f(x)在点x=处的切线的斜率;
(II)判断方程f '(x)=0(f '(x)为f(x)的导数)在区间(0,1)内的根的个数,说明理由;
(III)若函数F(x)=xsinx+cosx+ax在区间(0,1)内有且只有一个极值点,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三角形ABC中,,,,D是线段BC上一点,且,F为线段AB上一点.
(1)若,求的值;
(2)求的取值范围;
(3)若为线段的中点,直线与相交于点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,货轮在海上B处,以50海里/时的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为155o的方向航行,为了确定船位,在B点处观测到灯塔A的方位角为125o.半小时后,货轮到达C点处,观测到灯塔A的方位角为80o.求此时货轮与灯塔之间的距离(答案保留最简根号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的前n项的和记为Sn.如果a4=-12,a8=-4.
(1)求数列{an}的通项公式;
(2)求Sn的最小值及其相应的n的值;
(3)从数列{an}中依次取出a1,a2,a4,a8,…,,…,构成一个新的数列{bn},求{bn}的前n项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com