精英家教网 > 高中数学 > 题目详情

【题目】五一期间,某商场决定从种服装、种家电、种日用品中,选出种商品进行促销活动.

(1)试求选出种商品中至少有一种是家电的概率;

(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高元,规定购买该商品的顾客有次抽奖的机会: 若中一次奖,则获得数额为元的奖金;若中两次奖,则获得数额为元的奖金;若中三次奖,则共获得数额为 元的奖金. 假设顾客每次抽奖中奖的概率都是,请问: 商场将奖金数额最高定为多少元,才能使促销方案对商场有利?

【答案】 ;⑵.

【解析】试题分析:

(1)利用题意首先求解没有家电的概率,结合对立事件的概率公式求解至少有一种是家电的概率即可;

(2)利用题意得到关于 的分布列,结合数学期望讨论商场将奖金数额最高定为多少元,才能使促销方案对商场有利即可.

试题解析:

⑴设选出的 种商品中至少有一种是家电为事件A,从 种服装、 种家电、 种日用品中,选出 种商品,一共有种不同的选法,

选出的 种商品中,没有家电的选法有种,

所以,选出的 种商品中至少有一种是家电的概率为

⑵设顾客三次抽奖所获得的奖金总额为随机变量,其所有可能的取值为0, .(单元:元),

表示顾客在三次抽奖都没有获奖,所以

同理;

;

;

顾客在三次抽奖中所获得的奖金总额的期望值是

,解得

所以最高定为元,才能使促销方案对商场有利.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知:以点为圆心的圆与x轴交于点OA,与y轴交于点OB,其中O为原点.

(1)求证:△OAB的面积为定值; (2)设直线y=-2x+4与圆C交于点MN,若|OM|=|ON|,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在ABC中,内角A,B,C的对边分别为a,b,c,已知
(1)求 的值;
(2)若 ,b=2,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<α<π,tanα=﹣2.
(1)求sin(α+ )的值;
(2)求 的值;
(3)2sin2α﹣sinαcosα+cos2α

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体

求证:(ⅰ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(wx+φ)(x∈R,w>0,0<φ< )的部分图象如图所示.

(1)求函数f(x)的解析式;
(2)求函数g(x)=f(x﹣ )﹣f(x+ )的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆

1)若圆轴相切,求圆的方程;

2)求圆心的轨迹方程;

3)已知,圆轴相交于两点(点在点的左侧).过点任作一条直线与圆 相交于两点问:是否存在实数,使得若存在,求出实数的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面分别是的中点.

求证:(I)底面

(II)平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=3n+m(m为常数,n∈N+)
(1)求a1 , a2 , a3
(2)若数列{an}为等比数列,求常数m的值及an
(3)对于(2)中的an , 记f(n)=λa2n+1﹣4λan+1﹣7,若f(n)<0对任意的正整数n恒成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案