精英家教网 > 高中数学 > 题目详情

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了日至日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下资料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温差/摄氏度

发芽数/颗

该农科所确定的研究方案是:先从这组数据中选取组,用剩下的组数据求线性回归方程,再用被选取的组数据进行检验.

(1)求选取的组数据恰好是不相邻天的数据的概率;

(2)若选取的是日与日的两组数据,请根据日至日的数据,求出关于的线性回归方程,由线性回归方程得到的估计数据与所选取的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(2)中所得试的线性回归方程是否可靠?

附:

【答案】(1);(2)答案见解析.

【解析】分析:(1)设抽到不相邻两组数据为事件,由题意结合对立事件计算公式可得.

(2)由数据,求得,则回归方程为.时,;当时,.则该研究所得到的线性回归方程是可靠的.

详解:(1)设抽到不相邻两组数据为事件,因为从组数据中选取组数据共有种情况,每种情况都是等可能出现的,其中抽到相邻两组数据的情况有种,

所以.

(2)由数据,求得

由公式,可得

.

所以

所以关于的线性回归方程是.

时,

同样,当时,.

所以该研究所得到的线性回归方程是可靠的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个正四面体的“骰子”(四个面分别标有1,2,3,4四个数字),掷一次“骰子”三个侧面的数字的和为“点数”,连续抛掷“骰子”两次.
(1)设A为事件“两次掷‘骰子’的点数和为16”,求事件A发生的概率;
(2)设X为两次掷“骰子”的点数之差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|﹣|x﹣4a|(a>0),若对x∈R,都有f(2x)﹣1≤f(x),则实数a的最大值为(  )
A.
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 ,使 恒成立,命题 使函数 有零点, 若命题“ ”是真命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式|ax﹣2|<3的解集为{x|﹣ <x< },则a=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)两个共轭复数的差是纯虚数;(2)两个共轭复数的和不一定是实数;(3)若复数a+bi(a,b∈R)是某一元二次方程的根,则a﹣bi是也一定是这个方程的根;(4)若z为虚数,则z的平方根为虚数,
其中正确的个数为(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的顶点边上的中线所在直线方程为的角平分线所在直线方程为

(I)求顶点的坐标;

(II)求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,

(1)求证:数列是等比数列

(2)求数列的通项公式

(3)设,若对任意,有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一学生共有500人,为了了解学生的历史学习情况,随机抽取了50名学生,对他们一年来4次考试的历史平均成绩进行统计,得到频率分布直方图如图所示,后三组频数成等比数列.
(1)求第五、六组的频数,补全频率分布直方图;
(2)若每组数据用该组区间中点值(例如区间[70,80)的中点值是
75作为代表,试估计该校高一学生历史成绩的平均分;
(3)估计该校高一学生历史成绩在70~100分范围内的人数.

查看答案和解析>>

同步练习册答案