精英家教网 > 高中数学 > 题目详情
5.已知命题p:a≥2;命题q:对任意实数x∈[-1,1],关于x的不等式x2-a≤0恒成立,若p且q是真命题,则实数a的取值范围是[2,+∞).

分析 根据不等式恒成立求出命题q的等价条件,结合p且q是真命题,建立不等式关系进行求解即可.

解答 解:命题q:对任意实数x∈[-1,1],关于x的不等式x2-a≤0恒成立,
即a≥x2,恒成立,
∵0≤x2≤1,
∴a≥1,
若p且q是真命题,则p,q同时为真命题,
则$\left\{\begin{array}{l}{a≥2}\\{a≥1}\end{array}\right.$,即a≥2,
故答案为:[2,+∞)

点评 本题主要考查复合命题真假关系的应用,求出命题的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.计算:C${\;}_{100}^{98}$=4950(用数字表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c分别为△ABC内角A,B,C的对边,sinA=acosC,c=$\sqrt{3}$.
(1)求角C;
(2)求acosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0),其左,右焦点分别为F1,F2,若以右焦点F2(c,0)(c>0)为圆心作半径为c的圆与双曲线的右支的一个交点为M,且直线F1M恰好与圆相切,则双曲线的离心率为$\sqrt{3}+1$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的函数f(x),其导函数是f′(x),若x•f′(x)+f(x)<0,则下列结论一定正确的是(  )
A.3f(2)<2f(3)B.3f(2)>2f(3)C.2f(2)<3f(3)D.2f(2)>3f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果P1,P2,P3是抛物线C:y2=8x上的点,它们的横坐标依次为x1,x2,x3.F是抛物线C的焦点,若x1+x2+x3=10,则|P1F|+|P2F|+|P3F|=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}中,a1=2,n≥2时,an=$\frac{7{a}_{n-1}-3}{3{a}_{n-1}+1}$,则使得an≥$\frac{13}{11}$成立的最大正整数n=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(2-a)x-2lnx+a-2,g(x)=xe1-x
(1)若函数f(x)在区间(0,$\frac{1}{2}$)无零点,求实数a的最小值
(2)若对任意给定的x0∈(0,e],方程f(x)=g(x0)在(0,e]上总存在两个不等的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥E-ABCD中,底面ABCD是矩形,AB=1,AE⊥平面CDE,$AE=DE=\sqrt{6}$,F为线段DE上的一点.
(Ⅰ)求证:平面AED⊥平面ABCD;
(Ⅱ)若二面角E-BC-F与二面角F-BC-D的大小相等,求DF的长.

查看答案和解析>>

同步练习册答案