精英家教网 > 高中数学 > 题目详情
函数f(x)=cos(2x+φ)的图象向左平移
π
3
单位后为奇函数,则φ的最小正值为
 
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:根据三角函数的奇偶性的性质即可得到结论.
解答: 解:函数f(x)=cos(2x+φ)的图象向左平移
π
3
单位后得到函数为y=cos[2(x+
π
3
)+φ]=cos(2x+
3
+φ),
若函数为奇函数,
3
+φ=
π
2
+kπ,k∈Z,
解得φ=-
6
+kπ,
当k=1时,φ=
π
6

故答案为:
π
6
点评:本题主要考查三角函数的图象关系以及三角函数奇偶性的应用,要求熟练掌握三角函数的图象和性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A1、A2是双曲线
x2
4
-
y2
3
=1的实轴两个端点,P1P2是双曲线的垂直于x轴的弦,
(Ⅰ)直线A1P1与A2P2交点P的轨迹C的方程;
(Ⅱ)过x=4与x轴的交点Q作直线与(1)中轨迹C交于M、N两点,连接FN、FM,其中F(1,0),求证:kFN+kFM为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M的半径为3,圆心在x轴正半轴上,直线3x-4y+9=0与圆M相切
(Ⅰ)求圆M的标准方程;
(Ⅱ)过点N(0,-3)的直线L与圆M交于不同的两点A(x1,y1),B(x2,y2),而且满足x12+x22=
21
2
x1
x2,求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l的参数方程是
x=-1+2t
y=2-3t
(t∈R,t是参数),试写出直线l的一个方向向量是
 
.(答案不唯一)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sinwx(0<ω<1)在区间[0,
π
3
]最大值是
2
,则w=(  )
A、
2
3
B、
3
2
C、
4
3
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2-xlnx-(2a-1)x+a-1(a∈R)
(1)当a=0时,求函数f(x)在点P(e,f(e))处的切线方程;
(2)对任意的x∈[1,+∞),函数f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面α平行平面β,点A,C∈平面α,点B,D∈平面β,直线AB与CD相交于点S,且AS=8,BS=9,CD=34.则线段CS的长度是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数g(x)=ax2+bx+c(a>0),且g(1)=-
a
2

(1)求证:函数g(x)有两个零点
(2)设m,n是函数g(x)的两个零点,求|m-n|的取值范围
(3)讨论函数g(x)在区间(0,2)内的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={m|y=
12
m
∈N,m∈N},用列举法表示集合A,A=
 

查看答案和解析>>

同步练习册答案