精英家教网 > 高中数学 > 题目详情

【题目】已知2017年市居民平均家庭净收入走势图(家庭净收入=家庭总收入一家庭总支出),如图所示,则下列说法错误的是( )

A. 2017年2月份市居国民的平均家庭净收入最低

B. 2017年4,5,6月份市居民的平均家庭净收入比7、8、9月份的平均家庭净收入波动小

C. 2017年有3个月市居民的平均家庭净收入低于4000元

D. 2017年9、10、11、12月份平均家庭净收入持续降低

【答案】D

【解析】

2017A市居民平均家庭净收入走势图观察可得ABC正确,D错误.

由2017年市居民平均家庭净收入走势图可得2月份市居国民的平均家庭净收入最低,故A正确;

由2017年市居民平均家庭净收入走势图可得4,5,6月份市居民的平均家庭净收入为6000,5000,5500,7、8、9月份的平均家庭净收入为6800,3100,6600,故B正确;

2017年市居民平均家庭净收入走势图可得1,2,8月份的市居民的平均家庭净收入低于4000元,故C正确;

2017年9、10、11、12月份平均家庭净收入呈现先降后升再降,故D错误.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知满足约束条件,若目标函数的最小值为-5,则的最大值为( )

A. 2B. 3

C. 4D. 5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)若曲线与直线交于两点,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:①成立的必要不充分条件②命题,则的否命题是:,则;③命题,使得的否定是:,均有④如果命题与命题都是真命题,那么命题一定是真命题;其中为真命题的个数是(

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,底面ABCD是边长为3的正方形,EFG分别是棱ABPBPC的中点,,.

(Ⅰ)求证:平面EFG∥平面PAD;

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图1).因其经济又环保,至今还在农业生产中得到使用(如图2).假定在水流量稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.因筒车上盛水筒的运动具有周期性,可以考虑利用三角函数模型刻画盛水筒(视为质点)的运动规律.将筒车抽象为一个几何图形,建立直角坐标系(如图3).设经过t秒后,筒车上的某个盛水筒从点P0运动到点P.由筒车的工作原理可知,这个盛水筒距离水面的高度H(单位: ),由以下量所决定:筒车转轮的中心O到水面的距离h,筒车的半径r,筒车转动的角速度ω(单位: ),盛水筒的初始位置P0以及所经过的时间t(单位: ).已知r=3h=2,筒车每分钟转动(按逆时针方向)1.5圈, P0距离水面的高度为3.5,若盛水筒M从点P0开始计算时间,则至少需要经过_______就可到达最高点;若将点距离水面的高度表示为时间的函数,则此函数表达式为_________

1 2 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电力公司在工程招标中是根据技术、商务、报价三项评分标准进行综合评分的,按照综合得分的高低进行综合排序,综合排序高者中标.

分值权重表如下:

总分

技术

商务

报价

100%

50%

10%

40%

技术标、商务标基本都是由公司的技术、资质、资信等实力来决定的.报价表则相对灵活,报价标的评分方法是:基准价的基准分是68分,若报价每高于基准价1%,则在基准分的基础上扣0.8分,最低得分48分;若报价每低于基准价1%,则在基准分的基础上加0.8分,最高得分为80分.若报价低于基准价15%以上(不含15%)每再低1%,在80分在基础上扣0.8分.

在某次招标中,若基准价为1000(万元).甲、乙两公司综合得分如下表:

公司

技术

商务

报价

80分

90分

A甲分

70分

100分

A乙分

甲公司报价为1100(万元),乙公司的报价为800(万元)则甲,乙公司的综合得分,分别是(  )

A. 73,75.4B. 73,80C. 74.6,76D. 74.6,75.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB分别是双曲线的左右顶点,设过的直线PAPB与双曲线分别交于点MN,直线MNx轴于点Q,过Q的直线交双曲线的于ST两点,且,则的面积( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是由菱形,平行四边形和矩形组成的一个平面图形,其中,将其沿折起使得重合,如图2

1)证明:图2中的平面平面

2)求图2中点到平面的距离;

3)求图2中二面角的余弦值.

查看答案和解析>>

同步练习册答案