精英家教网 > 高中数学 > 题目详情
6.设x、y满足约束条件$\left\{{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤2}\end{array}}\right.$,则z=-2x+3y的最小值是-4.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤2}\end{array}}\right.$作出可行域如图,

A(2,0),
化目标函数z=-2x+3y为y=$\frac{2}{3}x+\frac{z}{3}$,由图可知,当直线y=$\frac{2}{3}x+\frac{z}{3}$过A时,直线在y轴上的截距最小,z有最小值为-4.
故答案为:-4.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设a,b,c>0,则$a+\frac{1}{b},b+\frac{1}{c},c+\frac{1}{a}$(  )
A.都不大于2B.都不小于2
C.至少有一个不大于2D.至少有一个不小于2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知离心率是$\sqrt{5}$的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点与抛物线y2=20x的焦点重合,则该双曲线的标准方程为$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=sin$\frac{π}{5}$,b=log${\;}_{\sqrt{2}}$$\sqrt{3}$,c=($\frac{1}{4}$)${\;}^{\frac{2}{3}}$,则(  )
A.a<c<bB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆E的中心为原点O,焦点在x轴上,E上的点与E的两个焦点构成的三角形面积的最大值为12,直线4x+5y+12=0交椭圆于E于M,N两点.设P为线段MN的中点,若直线OP的斜率等于$\frac{4}{5}$,则椭圆E的方程为$\frac{x^2}{25}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”,已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是(  )
A.10日B.20日C.30日D.40日

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i为虚数单位,则复数$\frac{1}{1+i}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,已知圆C:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}}\right.$(θ为参数),点P在直线l:x+y-4=0上,以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.
( I)求圆C和直线l的极坐标方程;
( II)射线OP交圆C于R,点Q在射线OP上,且满足|OP|2=|OR|•|OQ|,求Q点轨迹的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y≥0\\ x+2y≤4\\ x-2y≤2\end{array}\right.$,如果目标函数z=x+ay的最大值为$\frac{16}{3}$,则实数a的值为(  )
A.3B.$\frac{14}{3}$C.3或$\frac{14}{3}$D.3或$-\frac{11}{3}$

查看答案和解析>>

同步练习册答案