精英家教网 > 高中数学 > 题目详情
精英家教网(几何证明选讲) 
如图,AD是⊙O的直径,AB是⊙O的切线,M,N是圆上两点,直线MN交AD的延长线于点C,交⊙O的切线于B,BM=MN=NC=1,求AB的长和⊙O的半径.
分析:利用切割线定理可得:AB2=BM•BN.可得AB.再利用勾股定理可得AC,再利用割线定理可得CN•CM=CD•CA,即可得出.
解答:解:∵AD是⊙O的直径,AB是⊙O的切线,直线BMN是⊙O的割线,
∴∠BAC=90°,AB2=BM•BN.
∵BM=MN=NC=1,∴2BM2=AB2
∴AB=
2

在Rt△BAC中,可得AB2+AC2=BC2
∴2+AC2=9,AC=
7

∵CN•CM=CD•CA,
∴2=CD•
7
,∴CD=
2
7
7

∴⊙O的半径为
1
2
(CA-CD)=
5
14
7
点评:本题考查了圆的切线的性质、切割线定理、勾股定理,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(1)(不等式选讲)已知函数f(x)=log2(|x-1|+|x-5|-a),当函数f(x)的定义域为R时,则实数a的取值范围为
(-∞,4)
(-∞,4)

(2)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为
5
2
5
2


(3)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为
y=x+2
y=x+2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•蓟县一模)(几何证明选讲)如图,点A、B、C都在⊙O上,过点C的切线交AB的延长线于点D,若AB=5,BC=3,CD=6,则线段AC的长为
4.5
4.5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)(选修4-1 几何证明选讲)
如图,已知CB是⊙O的一条弦,A是⊙O上任意一点,过点A作⊙O的切线交直线CB于点P,D为⊙O上一点,且∠ABD=∠ABP.
求证:AB2=BP•BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为
5
2
5
2

(2)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为
x-y-2=0
x-y-2=0

(3)(不等式选讲)若不等式|3x-b|<4的解集中的整数有且仅有0,1,2,则b的取值范围是
(2,4)
(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

从A,B,C,D四个中选做2个A.选修4-1(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.选修4-2(矩阵与变换)
将曲线xy=1绕坐标原点按逆时针方向旋转45°,求所得曲线的方程.
C.选修4-4(坐标系与参数方程)
求直线
x=1+2t
y=1-2t
(t为参数)被圆
x=3cosa
y=3sina
(α为参数)截得的弦长.
D.选修4-5(不等式选讲)
已知x,y均为正数,且x>y,求证:2x+
1
x2-2xy+y2
≥2y+3

查看答案和解析>>

同步练习册答案