精英家教网 > 高中数学 > 题目详情
6.已知等比数列{an}的公比q>1,其前n项和为Sn.若S4=2S2+1,则S6的最小值为2$\sqrt{3}$+3.

分析 利用等比数列的前n项和公式可得:a1(1+q)(q2-1)=1,则S6=$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=q2-1+$\frac{3}{{q}^{2}-1}$+3,再利用基本不等式的性质即可得出.

解答 解:∵S4=2S2+1,
∴$\frac{{a}_{1}(1-{q}^{4})}{1-q}$=2×$\frac{{a}_{1}(1-{q}^{2})}{1-q}$+1,
化为a1(1+q)(q2-1)=1,
∵q>1,
∴S6=$\frac{{a}_{1}(1-{q}^{6})}{1-q}$=$\frac{1}{(1+q)({q}^{2}-1)}$×(1+q+q2)(1+q)(1-q+q2)=q2-1+$\frac{3}{{q}^{2}-1}$+3≥$2\sqrt{3}$+3,当且仅当q2=1+$\sqrt{3}$,即q=$\sqrt{1+\sqrt{3}}$时取等号.
∴S6的最小值为2$\sqrt{3}$+3.
故答案为:2$\sqrt{3}$+3.

点评 本题考查了等比数列的前n项和公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知条件p:函数f(x)=log${\;}_{10-{a}^{2}}$x在(0,+∞)上单调递增;条件q:对于任意实数x.不等式x2-3ax+2a2-$\frac{1}{2}$+a>0恒成立.如果“p且q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若集合M={x|-2≤x≤2},N={x|x2-3x=0},则M∩N=(  )
A.{3}B.{0}C.{0,2}D.{0,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知O为△ABC的外心,AB=2,AC=3,如果$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}$,其中x、y满足x+2y=1,则cos∠BAC=$\frac{3}{4}$或$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知复数z满足:z(1-i)=2+4i,其中i为虚数单位,则复数z的模为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=$\sqrt{3-|x|}$+lg$\frac{{x}^{2}-3x+2}{x-2}$的定义域为(  )
A.(1,2)B.(1,3]C.(1,2)∪(2,3]D.(-1,2)∪(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=2xsin$\frac{x}{2}$cos$\frac{x}{2}$,有下列四个结论:
①?x∈R,都有f(-x)=-f(x)成立;
②存在常数T≠0,对于?x∈R,恒有f(x+T)=f(x)成立;
③?M>0,至少存在一个实数x0,使得f(x0)>M;
④函数y=f(x)有无数多个极值点.
其中正确结论的序号是③④(将所有正确结论的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.集合A={x|(x-1)(x+2)<0},集合B={x|lgx≤0},则A∩B=(  )
A.(0,1)B.(0,1]C.(-2,1]D.(-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知球O的直径长为12,当它的内接正四棱锥的体积最大时,该四棱锥的底面边长为(  )
A.4B.6C.8D.12

查看答案和解析>>

同步练习册答案