精英家教网 > 高中数学 > 题目详情
17.下列关于圆锥曲线的命题:
①设A,B为两个定点,P为动点,若|PA|+|PB|=8,则动点P的轨迹为椭圆;
②设A,B为两个定点,P为动点,若|PA|=10-|PB|,且|AB|=8,则|PA|的最大值为9;
③设A,B为两个定点,P为动点,若|PA|-|PB|=6,则动点P的轨迹为双曲线;
④双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{10}$=1与椭圆$\frac{{x}^{2}}{30}$+$\frac{{y}^{2}}{4}$=1有相同的焦点.
其中真命题的序号是②④.

分析 ①,根据椭圆的定义,当8>|AB|时是椭圆;
②,利用椭圆的定义,求出a、c,|PA|的最大值为a+c;
③,利用双曲线的定义判断;
④,根据双曲线、椭圆标准方程判断.

解答 解:对于①,根据椭圆的定义,当k>|AB|时是椭圆,∴故为假命题;
对于②,由|PA|=10-|PB|,得|PA|+|PB|=10>|AB|,所以动点P的轨迹为以A,B为焦点的图象,且2a=10,2c=8,所以a=5,c=4,根据椭圆的性质可知,|PA|的最大值为a+c=5+3=9,所以为真命题.
对于③,设A,B为两个定点,P为动点,若|PA|-|PB|=6,当6<|AB|时,则动点P的轨迹为双曲线,故为假命题;
对于④,双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{10}$=1的焦点为($±\sqrt{26}$,0),椭圆$\frac{{x}^{2}}{30}$+$\frac{{y}^{2}}{4}$=1的焦点($±\sqrt{26}$,0),故为真命题.
故答案为:②④.

点评 本题考查了圆锥曲线的命题的真假判定,掌握圆锥曲线的定义是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,曲线C的方程为$ρ=4(cosθ+sinθ)-\frac{6}{ρ}$,以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系.
(1)求曲线C的参数方程;
(2)在直角坐标系中,点M(x,y)是曲线C上一动点,求x+y的最大值,并求此时点M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知${x_1}={log_{\frac{1}{3}}}2$,${x_2}={2^{-\frac{1}{2}}}$,${({\frac{1}{3}})^{x3}}={log_3}{x_3}$,则(  )
A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x3<x1<x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知动点M到点F(1,0)的距离等于它到直线x=-1的距离.
(Ⅰ)求点M的轨迹C的方程;
(Ⅱ)过点F任意作互相垂直的两条直线l1,l2,分别交曲线C于点A,B和M,N.设线段AB,MN的中点分别为P,Q.求证:直线PQ恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“a=1“是“函数f(x)=ax2-2x+1只有一个零点”的(  )
A.充要条件B.必要而不充分条件
C.充分而不必要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.$\frac{1}{a}>-1$是a<-1成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.向量$\overrightarrow{a}$,$\overrightarrow{b}$均为非零向量,($\overrightarrow{a}$-2$\overrightarrow{b}$)⊥$\overrightarrow{a}$,($\overrightarrow{b}$-2$\overrightarrow{a}$)⊥$\overrightarrow{b}$,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.实数a,b满足2a+2b=1,则a+b的取值范围是(  )
A.(-∞,-2]B.(-∞,-1]C.(-∞,-4]D.$(-∞,-\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某购物中心为了了解顾客使用新推出的某购物卡的顾客的年龄分布情况,随机调查了100位到购物中心购物的顾客年龄,并整理后画出频率分布直方图如图所示,年龄落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.
(1)求顾客年龄值落在区间[75,85]内的频率;
(2)拟利用分层抽样从年龄在[55,65),[65,75)的顾客中选取6人召开一个座谈会,现从这6人中选出2人,求这两人在不同年龄组的概率.

查看答案和解析>>

同步练习册答案