精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形是梯形,四边形是矩形,且平面平面的中点.

1)证明:平面

2)求平面与平面所成锐二面角的余弦值.

【答案】1)证明见解析(2

【解析】

1)连接,交,连接,中利用中位线的性质求证即可;

2)由题易证得两两垂直,则以点为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,分别求得平面与平面的法向量,利用数量积求解即可.

1)证明:连接,交,连接,如图所示,

因为四边形是矩形,所以的中点,

由于的中点,

所以,

由于平面,平面,

所以平面.

2)因为平面平面,平面平面,,

所以平面,

可知两两垂直,

以点为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,如图所示,

因为,则,,

所以,,

设平面的法向量为,

,所以,

,则,

依题意,得平面的一个法向量为,

,

故平面与平面所成锐二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆E的方程为),分别为椭圆的左右焦点,AB为椭圆E上关于原点对称两点,点M为椭圆E上异于AB一点,直线和直线的斜率满足:.

1)求椭圆E的标准方程;

2)过作直线l交椭圆于CD两点,且),求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体ABCDEF中,四边形ABCD为平行四边形,平面ADE⊥平面CDEF,∠ADE60°DECFCDDEAD2DEDC3CF4,点G是棱CF上的动点.

(Ⅰ)当CG3时,求证EG∥平面ABF

(Ⅱ)求直线BE与平面ABCD所成角的正弦值;

(Ⅲ)若二面角GAED所成角的余弦值为,求线段CG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为(其中为参数),以原点为极点,以轴为极轴建立极坐标系,曲线的极坐标方程为为常数,且),直线与曲线交于两点.

1)若,求实数的值;

2)若点的直角坐标为,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中为常数).

1)若上单调递增,求实数的取值范围;

2)若上的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,四边形为钝角的平行四边形,四边形为直角梯形,.

1)求证:

2)若点到平面的距离为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆中心在坐标原点,是它的两个顶点,直线AB相交于点D,与椭圆相交于EF两点.

)若,求的值;

)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD的底面ABCD是平行四边形,∠BCD=135°,PA⊥平面ABCD,AB=AC=PA=2,E,F,M分别为线段BC,AD,PD的中点.

(1)求证:直线EF⊥平面PAC;

(2)求平面MEF与平面PBC所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家提出的中国剩余定理又称孙子定理,它在世界数学史上具有光辉的一页,堪称数学史上名垂百世的成就,而且一直启发和指引着历代数学家们.定理涉及的是数的整除问题,其数学思想在近代数学、当代密码学研究及日常生活都有着广泛应用,为世界数学的发展做出了巨大贡献,现有这样一个整除问题:将120192019个整数中能被5除余1且被7除余2的数按从小到大的顺序排成一列,构成数列,那么此数列的项数为(

A.56B.57C.58D.59

查看答案和解析>>

同步练习册答案