精英家教网 > 高中数学 > 题目详情

【题目】若数列同时满足:①对于任意的正整数 恒成立;②对于给定的正整数 对于任意的正整数恒成立,则称数列是“数列”.

(1)已知判断数列是否为“数列”,并说明理由;

(2)已知数列是“数列”,且存在整数,使得 成等差数列,证明: 是等差数列.

【答案】(1)是(2)见解析

【解析】试题分析:(1)根据定义验证两个条件是否成立,由于函数为分段函数,所以分奇偶分别验证(2)根据定义数列隔项成等差,再根据单调性确定公差相等,最后求各项通项,根据通项关系得数列通项,根据等差数列证结论

试题解析:(1)当为奇数时, ,所以.

.

为偶数时, ,所以.

.

所以,数列是“数列”.

(2)由题意可得:

则数列 是等差数列,设其公差为

数列 是等差数列,设其公差为

数列 是等差数列,设其公差为.

因为,所以

所以

所以①,②.

,则当时,①不成立;

,则当时,②不成立;

,则①和②都成立,所以.

同理得: ,所以,记.

.

同理可得: ,所以.

所以是等差数列.

【另解】

以上三式相加可得: ,所以

所以

所以,所以

所以,数列是等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆的标准方程为,圆心为,直线的方程为,点在直线上,过点作圆的切线,切点分别为

1)若,试求点的坐标;

2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程;

3)求证:经过三点的圆必过定点,并求出所有定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且满足,设,则以下四个命题:(1是等差数列;(2中最大项是;(3通项公式是;(4.其中真命题的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从数列中取出部分项组成的数列称为数列子数列”.

1)若等差数列的公差,其子数列恰为等比数列,其中,求

2)若,判断数列是否为子数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市政府招商引资,为吸引外商,决定第一个月产品免税,某外资厂该第一个月A型产品出厂价为每件10元,月销售量为6万件;第二个月,当地政府开始对该商品征收税率为 ,即销售1元要征收元)的税收,于是该产品的出厂价就上升到每件元,预计月销售量将减少p万件.

1)将第二个月政府对该商品征收的税收y(万元)表示成p的函数,并指出这个函数的定义域;

2)要使第二个月该厂的税收不少于1万元,则p的范围是多少?

3)在第(2)问的前提下,要让厂家本月获得最大销售金额,则p应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形ABCD为菱形,GACBD交点,

(I)证明:平面平面

(II)若 三棱锥的体积为,求该三棱锥的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=

(1)试将污水净化管道的长度L表示为的函数,并写出定义域;

(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为,点在椭圆上.

1)求椭圆的方程;

2)若AB是椭圆上位于x轴上方的两点,直线与直线交于点P,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块多边形的花园,它的水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中米,,则这块花园的面积为______平方米.

查看答案和解析>>

同步练习册答案