【题目】若数列同时满足:①对于任意的正整数, 恒成立;②对于给定的正整数, 对于任意的正整数恒成立,则称数列是“数列”.
(1)已知判断数列是否为“数列”,并说明理由;
(2)已知数列是“数列”,且存在整数,使得, , , 成等差数列,证明: 是等差数列.
【答案】(1)是(2)见解析
【解析】试题分析:(1)根据定义验证两个条件是否成立,由于函数为分段函数,所以分奇偶分别验证(2)根据定义数列隔项成等差,再根据单调性确定公差相等,最后求各项通项,根据通项关系得数列通项,根据等差数列证结论
试题解析:(1)当为奇数时, ,所以.
.
当为偶数时, ,所以.
.
所以,数列是“数列”.
(2)由题意可得: ,
则数列, , , 是等差数列,设其公差为,
数列, , , 是等差数列,设其公差为,
数列, , , 是等差数列,设其公差为.
因为,所以,
所以,
所以①,②.
若,则当时,①不成立;
若,则当时,②不成立;
若,则①和②都成立,所以.
同理得: ,所以,记.
设 ,
则
.
同理可得: ,所以.
所以是等差数列.
【另解】 ,
,
,
以上三式相加可得: ,所以,
所以 ,
,
,
所以,所以,
所以,数列是等差数列.
科目:高中数学 来源: 题型:
【题目】已知圆的标准方程为,圆心为,直线的方程为,点在直线上,过点作圆的切线,,切点分别为,.
(1)若,试求点的坐标;
(2)若点的坐标为,过作直线与圆交于两点,当时,求直线的方程;
(3)求证:经过,,三点的圆必过定点,并求出所有定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,且满足,,设,则以下四个命题:(1)是等差数列;(2)中最大项是;(3)通项公式是;(4).其中真命题的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从数列中取出部分项组成的数列称为数列的“子数列”.
(1)若等差数列的公差,其子数列恰为等比数列,其中,,,求;
(2)若,,判断数列是否为的“子数列”,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】市政府招商引资,为吸引外商,决定第一个月产品免税,某外资厂该第一个月A型产品出厂价为每件10元,月销售量为6万件;第二个月,当地政府开始对该商品征收税率为 ,即销售1元要征收元)的税收,于是该产品的出厂价就上升到每件元,预计月销售量将减少p万件.
(1)将第二个月政府对该商品征收的税收y(万元)表示成p的函数,并指出这个函数的定义域;
(2)要使第二个月该厂的税收不少于1万元,则p的范围是多少?
(3)在第(2)问的前提下,要让厂家本月获得最大销售金额,则p应为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(管道构成Rt△FHE,H是直角项点)来处理污水.管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=米,记∠BHE=.
(1)试将污水净化管道的长度L表示为的函数,并写出定义域;
(2)当取何值时,污水净化效果最好?并求出此时管道的长度L.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左、右焦点分别为,,点在椭圆上.
(1)求椭圆的方程;
(2)若A,B是椭圆上位于x轴上方的两点,直线与直线交于点P,,求直线的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com