精英家教网 > 高中数学 > 题目详情

【题目】已知某校6个学生的数学和物理成绩如下表:

学生的编号

1

2

3

4

5

6

数学

89

87

79

81

78

90

物理

79

75

77

73

72

74

(1)若在本次考试中,规定数学在80分以上(包括80分)且物理在75分以上(包括75分)的学生为理科小能手.从这6个学生中抽出2个学生,设表示理科小能手的人数,求的分布列和数学期望;

(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用表示数学成绩,用表示物理成绩,求的回归方程.

参考数据和公式:,其中.

【答案】(1)见解析;(2)

【解析】

(1)由题意得1号学生、2号学生为理科小能手,从而得到X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望;

(2)利用最小二乘法分别求出,由此能求出yx的回归直线方程.

(1)由题意得1号学生、2号学生为理科小能手.

的可能取值为:0,1,2

PX=0)

PX=1)

PX=2)

的分布列为

0

1

2

(2)

xiyi=37828,xi2=42476,

6)÷(

75﹣×84=

回归方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),直线的参数方程为为参数),设的交点为,当变化时, 的轨迹为曲线.

(1)写出的普遍方程及参数方程;

(2)以坐标原点为极点, 轴正半轴为极轴建立极坐标系,设曲线的极坐标方程为 为曲线上的动点,求点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2+alnx

1)若a=﹣1,求函数fx)的极值,并指出极大值还是极小值;

2)若a=1,求函数fx)在[1e]上的最值;

3)若a=1,求证:在区间[1+∞)上,函数fx)的图象在gx=x3的图象下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成角为60°.

(1)求二面角F-BE-D的余弦值;

(2)设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为

(1)求椭圆的方程;

(2)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构对某校高二文科学生的记忆力x和判断力y进行统计分析,得下表数据.

x

6

8

10

12

y

2

3

5

6

参考公式:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是

A. 对分类变量XY,随机变量K2的观测值k越大,则判断“XY有关系的把握程度越小

B. 在回归直线方程=0.2x+0.8中,当解释变量x每增加1个单位时,预报变量平均增加0.2个单位

C. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1

D. 回归直线过样本点的中心(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,.

(1)证明:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人耳的听力情况可以用电子测听器检测,正常人听力的等级为0-25(分贝),并规定测试值在区间为非常优秀,测试值在区间为优秀.某班50名同学都进行了听力测试,所得测试值制成频率分布直方图:

(Ⅰ)现从听力等级为的同学中任意抽取出4人,记听力非常优秀的同学人数为,求的分布列与数学期望;

(Ⅱ)在(Ⅰ)中抽出的4人中任选一人参加一个更高级别的听力测试,测试规则如下:四个音叉的发生情况不同,由强到弱的次序分别为1,2,3,4.测试前将音叉随机排列,被测试的同学依次听完后给四个音叉按发音的强弱标出一组序号 (其中 为1,2,3,4的一个排列).若为两次排序偏离程度的一种描述, ,求的概率.

查看答案和解析>>

同步练习册答案