精英家教网 > 高中数学 > 题目详情

【题目】若Sn为等差数列{an}的前n项和,且a1=1,S10=55.记bn=[lnan],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg99]=1.则数列{bn}的前2017项和为

【答案】4944
【解析】解:设等差数列{an}的公差为d,∵a1=1,S10=55.

∴55=10+ ×d,解得d=1.

∴an=1+n﹣1=n.

∵bn=[lnan],∴n=1,2,…9时,bn=0;

n=10,11,…,99,可得bn=1.

n=100,101,…,999,可得bn=2.

n=1000,1001,…,2017,可得bn=3.

∴数列{bn}的前2017项和=0×9+1×90+2×900+3×1018

=4944.

所以答案是:4944.

【考点精析】本题主要考查了数列的前n项和的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知复数z=bi(b∈R), 是实数,i是虚数单位.
(1)求复数z;
(2)若复数(m+z)2所表示的点在第一象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的前n项和为Sn , 且 (a∈N+).
(1)求a的值及数列{an}的通项公式;
(2)设 ,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公差不为0的等差数列{an}的前n项和为Sn , 若a2 , a5 , a14成等比数列, ,则a10=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点在直角坐标系的原点,极轴与x轴的正半轴重合,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=3,直线l的参数方程为 .试在曲线C上求一点M,使它到直线l的距离最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系xOy中,椭圆C: 的离心率是
抛物线E:x2=4y的焦点F是C的一个顶点.

(1)求椭圆C的方程;
(2)设与坐标轴不重合的动直线l与C交于不同的两点A和B,与x轴交于点M,且 满足kPA+kPB=2kPM , 试判断点M是否为定点?若是定点求出点M的坐标;若不是定点请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合L={l|l与直线y=x相交,且以交点的横坐标为斜率}.若直线l′∈L,点P(﹣1,2)到直线l′的最短距离为r,则以点P为圆心,r为半径的圆的标准方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学为研究函数 的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的值域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aex﹣2x﹣2a,且a∈[1,2],设函数f(x)在区间[0,ln2]上的最小值为m,则m的取值范围是(  )
A.[﹣2,﹣2ln2]
B.[﹣2,﹣ ]
C.[﹣2ln2,﹣1]
D.[﹣1,﹣ ]

查看答案和解析>>

同步练习册答案