精英家教网 > 高中数学 > 题目详情
设数列{an}和{bn}都是等差数列,且a1=25,b1=75,a2+b2=100,那么由an+bn所组成的数列的第37项的值为( )
A.0
B.37
C.100
D.-37
【答案】分析:先求出a1+b1的值,然后根据{an+bn}组成的数列也是等差数列,而a2+b2=100,可求出通项an+bn,从而求出所求.
解答:解:∵a1=25,b1=75
∴a1+b1=100
∵数列{an}和{bn}都是等差数列
∴{an+bn}组成的数列也是等差数列
而a2+b2=100,那么an+bn=100
∴a37+b37=100
故选C.
点评:本题主要考查了等差数列的通项公式,解题的关键{an+bn}组成的数列也是等差数列,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+b,当x∈[a1,b1]时值域为[a2,b2],当x∈[a2,b2]时值域为[a3,b3],当x∈[an-1,bn-1]时值域为[an,bn]…其中a、b为常数,a1=0,b1=1
(1)若a=1,b=2,求数列{an}和{bn}的通项公式.
(2)若a>0,a≠1,要使数列{bn}是公比不为1的等比数列,求b的值.
(3)若a>0,设数列{an}和{bn}的前n项和分别为Sn和Tn,求Tn-Sn的值.

查看答案和解析>>

科目:高中数学 来源:2011届湖北省天门市高三模拟考试(二)理科数学 题型:单选题

设数列{an}和{bn}的通项公式为an=和bn=(n∈N*),它们的前n项和依次为An和Bn,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖北省天门市高三模拟考试(二)理科数学 题型:选择题

设数列{an}和{bn}的通项公式为an=和bn=(n∈N*),它们的前n项和依次为An和Bn,则

   A.                B.               C.               D.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax+b,当x∈[a1,b1]时值域为[a2,b2],当x∈[a2,b2]时值域为[a3,b3],当x∈[an-1,bn-1]时值域为[an,bn]…其中a、b为常数,a1=0,b1=1
(1)若a=1,b=2,求数列{an}和{bn}的通项公式.
(2)若a>0,a≠1,要使数列{bn}是公比不为1的等比数列,求b的值.
(3)若a>0,设数列{an}和{bn}的前n项和分别为Sn和Tn,求Tn-Sn的值.

查看答案和解析>>

科目:高中数学 来源:2011年湖北省天门市高考数学模拟试卷1(理科)(解析版) 题型:选择题

设数列{an}和{bn}的通项公式为an=和bn=(n∈N*),它们的前n项和依次为An和Bn,则=( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案