精英家教网 > 高中数学 > 题目详情
15.在等差数列{an}中,若a4+a9+a14=36,则2a10-a11=(  )
A.6B.12C.24D.36

分析 利用等差数列的通项公式即可得出.

解答 解:设等差数列{an}的公差为d,∵a4+a9+a14=36,
∴3a1+24d=36,即a1+8d=12.
则2a10-a11=2(a1+9d)-(a1+10d)=a1+8d=12.
故选:B.

点评 本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.数列{an}是公差不为零的等差数列,若a1,a3,a4成等比数列,则公比q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=1+\frac{a}{{{2^x}+1}}({a∈R})$.
(1)当a=-2时,求f(x)的反函数;
(2)当a≥9时,证明函数g(x)=f(x)+2x在[0,1]上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=$(\frac{1}{2})^{{x}^{2}-1}$的单调递增区间为(  )
A.(-∞,0]B.[0,+∞)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,F1,F2是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,作过F1作两条相互垂直的直线l1,l2,其中直线l1交双曲线右支于点M,直线l2交双曲线左支于点N,以下说法一定正确的是④
①若|F2M|<|F2N|,则∠MF2N为锐角
②若|F2M|<|F2N|,则∠MF2N为钝角
③若|F2M|<|F1N|,则∠MF2N为锐角
④若|F2M|<|F1N|,则∠MF2N为钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)的定义域为D内的某个区间I上是增函数,且F(x)=$\frac{f(x)}{x}$在I上也是增函数,则称y=f(x)是I上的“完美函数”,已知g(x)=ex+x-lnx+1,若函数g(x)是区间[$\frac{m}{2}$,+∞)上的“完美函数”,则正整数m的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,且|2$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{7}$,则向量$\overrightarrow{a}$与向量$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数φ(x)=x2+ax+b,f(x)=$\frac{φ(x)-ax}{x}$.
(1)当f(1)=f(4),函数F(x)=f(x)-k有且仅有一个零点x0,且x0>0时,求k的值;
(2)求证:存在x0∈[-1,1],使|φ(x0)|≥|a|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.0.73<1;  1.2-1<1.(用“<”或“>”填空)

查看答案和解析>>

同步练习册答案