精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2-
1
3
ex3+ex(x-1)(其中e为自然对数的底数),记f(x)的导函数为f′(x).
(1)求函数y=f(x)的单调区间;
(2)求证:当x>0时,不等式f′(x)≥1+lnx恒成立.
考点:利用导数研究函数的单调性,导数在最大值、最小值问题中的应用
专题:导数的综合应用
分析:(1)利用导数判断函数的单调性,求出单调区间;
(2)当x>0时,令h(x)=1+lnx+ex2-x-exx,求出导数h′(x),当x=1时,h′(x)=0,由(1)得,ex-ex≥0,讨论当x>1时,当0<x<1时,导数的符号,从而得到h(x)的最大值,即可得证.
解答: (1)解:)∵f(x)=
1
2
x2-
1
3
ex3+ex(x-1),
∴f′(x)=-ex2+x+ex(x-1)+ex=x(ex+1-ex),
令y=ex+1-ex,则y′=ex-e,y′>0,得x>1,y′<0,得x<1,则x=1取极小,也是最小,
则y≥1.即ex+1-ex>0恒成立,
则g′(x)>0得x>0;g′(x)<0得x<0.
故g(x)的增区间为(0,+∞),减区间为(-∞,0).
(2)证明:当x>0时,1+lnx-f′(x)=1+lnx+ex2-x-exx,
令h(x)=1+lnx+ex2-x-exx,
h′(x)=
1
x
+2ex-1-exx-ex
当x=1时,h′(x)=0,由(1)得,ex-ex≥0,
当x>1时,h′(x)<0,当0<x<1时,h′(x)>0,
故x=1为极大值,也为最大值,且为h(1)=0.
故当x>0时,h(x)≤h(1),即有h(x)≤0,
故当x>0时,1+lnx-f′(x)≤0,即f′(x)≥1+lnx.
点评:本题考查导数的应用:求单调区间、求极值,求最值,考查构造函数证明不等式恒成立问题,转化为求函数的最值问题,应用导数求解,本题属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1
x-1
在[a,b]上的最大值为1,最小值为
1
3
,则a+b=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边长a,b,c依次成等差数列,a2+b2+c2=21,则b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(-∞,+∞)上的函数f(x)满足f(x+2)=f(x).
(1)若f(x)是偶函数,且当x∈(0,1)时,f(x)=x+1,求f(x)在(1,2)上的解析式;
(2)若f(1+x)=f(1-x),判断函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
a
1
6
-b
1
6
a
1
2
-a3b
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若x=-
π
3
是f(x)=cosx+asinx的对称轴,则f(x)=cosx+asinx的初相是(  )
A、-
π
6
B、
7
6
π
C、
5
6
π
D、
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)是定义在R上的奇函数,当x∈(0,1)时,f(x)=
2x
4x+1

(1)求f(x)在(-1,0)上的解析式
(2)证明:f(x)在(0,1)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,四边形ABCD是直角梯形,AD∥BC,AB⊥BC,AD=2,AB=3,BC=BE=7,△DCE是边长为6的正三角形.
(1)求证:平面DEC⊥平面BDE;
(2)求二面角C-BE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=-
1
4
,an=1-
1
an-1
(n>1),则a2014的值为(  )
A、-
1
4
B、5
C、
4
5
D、以上都不对

查看答案和解析>>

同步练习册答案