精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程是为参数),以该直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)写出曲线的普通方程和直线的直角坐标方程;

(2)设点,直线与曲线相交于两点,且,求实数的值.

【答案】(1)曲线的普通方程为,直线的直角坐标方程为;(2).

【解析】试题分析:(1)写普通方程,则只需消去参数和根据极坐标变换公式即可轻松求得故曲线的普通方程为.直线的直角坐标方程为.(2)由题可知,所以联立

,代入韦达定理即得答案

解析:

(1)

故曲线的普通方程为.

直线的直角坐标方程为.

(2)直线的参数方程可以写为为参数).

两点对应的参数分别为,将直线的参数方程代入曲线的普通方程可以得到

所以

解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知B为线段MN上一点,|MN|=6,|BN|=2,动圆C与MN相切于点B,分别过M,N作圆C的切线,两切线交于点P.求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 的左右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.
(1)若直线AP与BP的斜率之积为 ,求椭圆的离心率;
(2)若|AP|=|OA|,证明直线OP的斜率k满足|k|>

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产甲、乙两种产品所得利润分别为(万元),它们与投入资金(万元)的关系有经验公式.今将120万元资金投入生产甲、乙两种产品,并要求对甲、乙两种产品的投资金额都不低于20万元.

(Ⅰ)设对乙产品投入资金万元,求总利润(万元)关于的函数关系式及其定义域;

(Ⅱ)如何分配使用资金,才能使所得总利润最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, ,四边形为矩形,平面平面 .

(Ⅰ)求证: 平面

(Ⅱ)点在线段上运动,设平面与平面所成锐二面角为,试求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,证明:当时,

(2)若只有一个零点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于的一元二次方程有实数根,且,则下列结论中错误的个数是( )

(1)当时,;(2);(3)当时,;(4)二次函数的图象与轴交点的坐标为(2,0)和(3,0)

A. 1B. 2C. 3D. 0

查看答案和解析>>

同步练习册答案