精英家教网 > 高中数学 > 题目详情
12.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x-2x-b(b为常数),则f(-1)=1.

分析 直接利用奇函数的定义,求出函数的解析式,然后利用函数的解析式求解即可.

解答 解:f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x-2x-b(b为常数),
f(0)=0,可得20-0-b=0,解得b=1.当x≥0时,f(x)=2x-2x-1.
则f(-1)=-f(1)=-(21-2×1-1)=1.
故答案为:1.

点评 本题考查函数的解析式的应用,考查值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设函数y=x2与y=$(\frac{1}{2})^{x-2}$的图象交点为(x0,y0),则x0所在区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn=n2-2n-1,求这个数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.直线l的方程为(a+1)x+y+2-a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求a的值;
(2)若l不经过第二象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.各项为正数的数列{an} 的前n项和为Sn,且满足:Sn=$\frac{1}{4}$an2+$\frac{1}{2}$an+$\frac{1}{4}$(n∈N+).
(Ⅰ)求an
(Ⅱ)设函数f(n)=$\left\{\begin{array}{l}{{a}_{n},n为奇数}\\{f(\frac{n}{2}),n为偶数}\end{array}\right.$,Cn=f(2n+4)(n∈N+),求数列{Cn}的前n项和Tn..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)的定义域是[-1,2],则函数g(x)=f($\frac{x}{2}$)-f(4-x)的定义域是[2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,三棱柱ABC-A1B1C1的侧棱垂直于底面,底面边长和侧棱长均为2,D,D1分别是BC,B1C1的中点.
(1)求证:AD⊥C1D;
(2)求证:平面ADC1∥平面A1D1B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x2+bx+4满足f(1+x)=f(1-x),且函数y=f(3x)-m在x∈[-1,2]上有零点,则实数m的取值范围为[$\frac{31}{9}$,11].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.f(x)的图象如图,则f(x)的值域为[-4,3].

查看答案和解析>>

同步练习册答案