精英家教网 > 高中数学 > 题目详情

已知椭圆:的左右焦点分别为,离心率为,两焦点与上下顶点形成的菱形面积为2.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的直线与椭圆交于A, B两点,四边形为平行四边形,为坐标原点,且,求直线的方程.

 

【答案】

(Ⅰ)椭圆的方程:  ……………………………………………………4分

(Ⅱ)首先,直线的斜率不存在时,,舍去;

      设直线的方程为: ,代入椭圆方程:

所以,设,则

   及得:

,结合韦达定理可求出

 ,所以所求直线的方程为:  

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的左右焦点坐标分别是(-2,0),(2,0),离心率
2
2
,直线y=x-1与椭圆C交于不同的两点A,B.
(1)求椭圆C的方程;
(2)求弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的左右焦点分别为F1,F2,过F1作斜率为2的直线交椭圆E于P点,若△PF1F2为直角三角形,则椭圆E的离心率为
 

查看答案和解析>>

科目:高中数学 来源:2010-2011年福建省四地六校高二下学期第一次月考数学文卷 题型:解答题

 

(本小题12分)

已知椭圆C的左右焦点坐标分别是(-1,0),(1, 0),离心率,直线与椭圆C交于不同的两点M,N,以线段MN为直径作圆P。

(1)求椭圆C的方程;

(2)若圆P恰过坐标原点,求圆P的方程;

 

查看答案和解析>>

科目:高中数学 来源:2008-2009学年江苏省南通市启东中学高三(下)5月月考数学试卷(解析版) 题型:解答题

已知椭圆+=1的左右焦点分别为F1与F2,点P在直线l:x-y+8+2=0上.当∠F1PF2取最大值时,的比值为   

查看答案和解析>>

同步练习册答案