精英家教网 > 高中数学 > 题目详情
已知命题p:不等式|x-1|+|x+2|>m的解集为R:命题q:f(x)=log(5-2m)x为减函数.则?p是?q成立的(  )
A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件
分析:先将问题转化为判断q是p的什么条件;再利用绝对值的几何意义化简命题p;利用对数函数的单调性化简命题q;利用充要条件的定义判断出结论.
解答:解:判断?p是?q成立的什么条件等价于判断q是p的什么条件.
∵命题p:不等式|x-1|+|x+2|>m的解集为R,
∴|x-1|+|x+2|的最小值大于m即可
由绝对值的几何意义|x-1|+|x+2|表示数轴上的点到1,-2的距离和,
所以|x-1|+|x+2|的最小值为3
所以命题p:m<3.
∵命题q:f(x)=log(5-2m)x为减函数,
∴0<5-2m<1,
2<m<
5
2

即命题q:2<m<
5
2

若p成立,推不出q成立;反之,若q成立推出p成立.
所以q是p成立的充分不必要条件;
所以p是?q成立的充分不必要条件,
故选A
点评:本题考查绝对值的意义、考查不等式恒成立常转化为最值解;考查对数函数及指数函数的单调性取决于底数的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

21、已知命题p:不等式|x|+|x+1|>m的解集为R,命题q:函数f(x)=x2-2mx+1在(2,+∞)上是增函数.若p∨q为真命题,p∧q为假命题,则实数m的取值范围是
{m|1≤m≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式|x-1|>m-1的解集为R,命题q:f(x)=(5-2m)x是(-∞,+∞)上的增函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P:不等式ex>m的解集为R,命题q:f(x)=
2-m
x
在区间(0,+∞)上是减函数,若命题“p或q”为真,命题“p且q”为假,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式|x|+|x-1|>a的解集为R,命题q:f(x)=-(5-2a)x是减函数,若p,q中有且仅有一个为真命题,则实数a的取值范围是
[1,2)
[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式-2x+m>1,x∈[-1,0]恒成立;命题q:函数y=log2[4x2+4(m-2)x+1]的定义域为(-∞,+∞),若“p∨q”为真,“p∧q”为假,求m的取值范围.

查看答案和解析>>

同步练习册答案