【题目】已知函数f(x)= ﹣alnx,其中a>0,x>0,e是自然对数的底数. (Ⅰ)讨论f(x)的单调性;
(Ⅱ)设函数g(x)= ,证明:0<g(x)<1.
【答案】解:(Ⅰ) = = =
①当0<a≤1时,ex>a,当x∈(0,1),f'(x)<0;当x∈(1,+∞),f'(x)>0;
所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
②当1<a<e时,令ex=a,得x=lna∈(0,1),
由f'(x)<0得lna<x<1,由f'(x)>0得0<x<lna或x>lna,
所以f(x)在(0,lna),(1,+∞)上单调递增,在(lna,1)上单调递减.
③当a=e时,令ex=a,f'(x)≥0,故f(x)在(0,+∞)上递增.
④当a>e时,令ex=a,得x=lna∈(1,+∞),
由f'(x)<0得1<x<lna,由f'(x)>0得0<x<1或x>lna,
所以f(x)在(0,1),(lna,+∞)上单调递增,在(1,lna)上单调递减.
综上,当0<a≤1时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
当1<a<e时,f(x)在(0,lna),(1,+∞)上单调递增,在(lna,1)上单调递减.
当a=e时,f(x)在(0,+∞)上递增.
当a>e时,f(x)在(0,1),(lna,+∞)上单调递增,在(1,lna)上单调递减.
(Ⅱ)证明:0<g(x)<1 1+xlnx>0①且 ②
先证①:令h(x)=1+xlnx,则h(x)=1+lnx,
当 ,h'(x)<0,h(x)单调递减;当 ,h'(x)>0,h(x)单调递增;
所以 = = ,故①成立!
再证②:由(Ⅰ),当a=1时, 在(0,1)上单调递减,在(1,+∞)上单调递增,
所以f(x)≥f(1)=e﹣1>0,故②成立!
综上,0<g(x)<1恒成立
【解析】(Ⅰ)求出 ,根据0<a≤1,1<a<e,a=e,a>e进行分类讨论,利用导数性质能讨论f(x)的单调性.(Ⅱ)0<g(x)<1等价于1+xlnx>0,且 ,由此利用导数性质能证明0<g(x)<1.
【考点精析】掌握利用导数研究函数的单调性和函数的最大(小)值与导数是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】某化工厂生产甲、乙两种肥料,生产1车皮甲种肥料能获得利润10000元,需要的主要原料是磷酸盐4吨,硝酸盐8吨;生产1车皮乙种肥料能获得利润5000元,需要的主要原料是磷酸盐1吨,硝酸盐15吨.现库存有磷酸盐10吨,硝酸盐66吨,在此基础上生产这两种肥料.问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是各项均为正数的等差数列,其中a1=1,且a2、a4、a6+2成等比数列;数列{bn}的前n项和为Sn , 满足2Sn+bn=1
(1)求数列{an}、{bn}的通项公式;
(2)如果cn=anbn , 设数列{cn}的前n项和为Tn , 求证:Tn<Sn+ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两名射手在一次射击中得分为两个相互独立的随机变量ξ,η,已知甲、乙两名射手在每次射击中射中的环数大于6环,且甲射中10,9,8,7环的概率分别为0.5,3a,a,0.1,乙射中10,9,8环的概率分别为0.3,0.3,0.2.
(1)求ξ,η的分布列;
(2)求ξ,η的数学期望与方差,并以此比较甲、乙的射击技术.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集U=R,A={y|y=2x+1},B={x|lnx<0},则(UA)∩B=( )
A.?
B.{x| <x≤1}
C.{x|x<1}
D.{x|0<x<1}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=sin(2014x+ )+cos(2014x﹣ )的最大值为A,若存在实数x1 , x2 , 使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A|x1﹣x2|的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+
(1)若函数有两个极值点,求实数a的取值范围;
(2)对所有的a≥ ,m∈(0,1),n∈(1,+∞),求f(n)﹣f(m)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= 图象过点(﹣1,2),且在该点处的切线与直线x﹣5y+1=0垂直.
(1)求实数b,c的值;
(2)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com