精英家教网 > 高中数学 > 题目详情
3.在△ABC中,角A,B,C所对的边分别是a,b,c,且csinA=$\sqrt{3}$acosC.
(1)求角C;
(2)若c=$\sqrt{14}$,且sinC=3sin2A+sin(A-B),求△ABC的面积.

分析 (1)由正弦定理可得sinCsinA=$\sqrt{3}$sinAcosC,由sinA≠0,可求tanC=$\sqrt{3}$,结合范围0<C<π,即可求得C的值.
(2)由已知可得2cosAsinB=6sinAcosA,当cosA≠0时,解得b=3a,利用余弦定理可求a,b,根据三角形面积公式即可得解,当cosA=0时,可求A=90°,求得b=ctan30°的值,即可解得三角形面积.

解答 解:(1)∵csinA=$\sqrt{3}$acosC.由正弦定理可得sinCsinA=$\sqrt{3}$sinAcosC,
∵sinA≠0,∴tanC=$\sqrt{3}$,
∵0<C<π,∴C=$\frac{π}{3}$…4分
(2)∵sinC=sin(π-A-B)=3sin2A+sin(A-B),
∴2cosAsinB=6sinAcosA,
当cosA≠0时,sinB=3sinA,∴b=3a,
${c}^{2}=14={a}^{2}+{b}^{2}-2ab•\frac{1}{2}=7{a}^{2}$,
∴a=$\sqrt{2}$,b=$3\sqrt{2}$,S=$\frac{1}{2}absinC$=$\frac{3\sqrt{3}}{2}$,
当cosA=0时,A=90°,b=ctan30°=$\frac{\sqrt{42}}{3}$,S=$\frac{1}{2}$bc=$\frac{7\sqrt{3}}{3}$…12分

点评 本题主要考查了三角形面积公式,正弦定理,余弦定理,特殊角的三角函数值的应用,考查了三角函数恒等变换的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若f(x)=4x2+1,则f(x+1)=4x2+8x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=($\frac{1}{4}$)x-($\frac{1}{2}$)x+1在x∈[-3,2]上的值域是[$\frac{3}{4}$,57].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)与函数y=-2(x+1)2的开口大小相同,开口方向也相同,f(x)的图象的顶点是(1,2),定义在R上的函数g(x)是奇函数,当x>0时,g(x)=f(x).
(1)求函数g(x)的解析式;
(2)作出函数g(x)的图象,并说明g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥2}\\{x≤1}\end{array}\right.$,则2x+y的最大值为(  )
A.5B.4C.3D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A为曲线C:4x2-y+1=0上的动点,定点M(-2,0),若$\overrightarrow{AT}=2\overrightarrow{TM}$,求动点T的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图是某几何体的正视图和俯视图,试分析此几何体的结构特征,并画出其侧视图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=2x2-x+1,则当x>0,f(x)=-2x2-x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=($\frac{1}{2}$)${\;}^{{x}^{2}+2x}$的值域是(  )
A.(0,+∞)B.(2,+∞)C.(0,2)D.(0,2]

查看答案和解析>>

同步练习册答案