精英家教网 > 高中数学 > 题目详情
13.已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.
(1)若|AF|=4,求点A的坐标;
(2)求线段AB的长的最小值.

分析 (1)由y2=4x,得p=2,其准线方程为x=-1,焦点F(1,0).设A(x1,y1),B(x2,y2).由抛物线的定义可知,|AF|=x1+$\frac{p}{2}$,从而x1=3.由此能得到点A的坐标.
(2)分类讨论,设直线l的方程为y=k(x-1),代入y2=4x整理得x2-6x+1=0,其两根为x1,x2,且x1+x2=6.由抛物线的定义可知线段AB的长.

解答 解:由y2=4x,得p=2,其准线方程为x=-1,焦点F(1,0).
设A(x1,y1),B(x2,y2).
(1)由抛物线的定义可知,|AF|=x1+$\frac{p}{2}$,从而x1=3.
代入y2=4x,解得y1=$±2\sqrt{3}$.
∴点A的坐标为(3,2$\sqrt{3}$)或(3,-2$\sqrt{3}$).
(2)斜率存在时,设直线l的方程为y=k(x-1),代入y2=4x整理得:k2x2-(2k2+4)x+k2=0.
再设B(x2,y2),则x1+x2=2+$\frac{4}{{k}^{2}}$.
∴|AB|=x1+x2+2=4+$\frac{4}{{k}^{2}}$>4.
斜率不存在时,|AB|=4,
∴线段AB的长的最小值为4.

点评 本题考查了抛物线的定义及其几何性质,以及直线与抛物线的位置关系.直线与抛物线的位置关系问题,一般是将直线方程代入抛物线方程消元得到关于x的一元二次方程,然后借助于韦达定理解决后续问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知正项等比数列{an}的前n项和为Sn,若-3,S5,S10成等差数列,则S15-S10的最小值为(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=1-x2的定义域为R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知tanα=2(α∈(0,π)),则cos($\frac{5π}{2}$+2α)=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知y=f(x)在定义域(-1,1)上是减函数且为奇函数,若f(1-a)+f(1-2a)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(n)=$\left\{\begin{array}{l}{0,x=1}\\{f(n-1)+3,(n∈{N^*},n≥2)}\end{array}$,则f(3)等于(  )
A.0B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,对任意的a,b∈R都有f(a+b)=f(a)•f(b)且对任意的x∈R,恒有f(x)>0;
(1)求f(0);
(2)证明:函数y=f(x)在R上是增函数;
(3)若f(x)•f(2x-x2)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若关于x的不等式x2+ax-c<0的解集为{x|-2<x<1},则函数g(x)=eax•x2的单调递减区间为(  )
A.(-∞,0)B.(-∞,-2)C.(-2,-1)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.光线由点A(-1,4)射出,遇到直线l:2x-3y-6=0后被反射,已知点$B(3,\frac{62}{13})$在反射光线上,则反射光线所在的直线方程为13x-26y+85=0.

查看答案和解析>>

同步练习册答案