精英家教网 > 高中数学 > 题目详情

【题目】以下说法中,正确的是_____.(填上所有正确说法的序号):

①已知角终边上一点,则

②函数的最小正周期是

③把函数的图象向右平移个单位长度可以得到的图象;

④数的图象关于对称;

⑤函数上有零点,则实数的取值范图是.

【答案】③④

【解析】

①由角的三角函数定义求解,判断即可;②由函数的图象可知最小正周期;③由函数图象的平移变换即可判断;④计算,可判断函数图象关于对称;⑤计算函数上的值域即可.

①已知角终边上一点,则,所以,故错误;

②函数的图象是将的图象轴下方的翻折到轴上方,最小正周期是,错误;

③把函数的图象向右平移个单位长度可以得到的图象,正确;

④令图象关于对称,正确;

函数上的值域为,则实数的取值范图是,错误.

故答案为:③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)判断并证明的单调性;

(Ⅱ)若不等式,对恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场一年购进某种货物900吨,每次都购进x吨,运费为每次9万元,一年的总存储费用为万元

1)要使一年的总运费与总存储费用之和最小,则每次购买多少吨?

2)要使一年的总运费与总存储费用之和不超过585万元,则每次购买量在什么范围?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱拄中,侧面,已知.

(Ⅰ)求证:平面

(Ⅱ)试在棱(不包含端点)上确定一点的位置使得

(Ⅲ)在(Ⅱ)的条件下,求和平面所成角正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若展开式中奇数项的二项式系数和为128,求展开式中二项式系数最大的项的系数;

2)若展开式前三项的二项式系数和等于37,求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】呼和浩特市地铁一号线于20191229日开始正式运营有关部门通过价格听证会,拟定地铁票价后又进行了一次调查.调查随机抽查了50人,他们的月收入情况与对地铁票价格态度如下表:

月收入(单位:百元)

认为票价合理的人数

1

2

3

5

3

4

认为票价偏高的人数

4

8

12

5

2

1

1)若以区间的中点值作为月收入在该区间内人的人均月收入求参与调查的人员中认为票价合理者的月平均收入与认为票价偏高者的月平均收入的差是多少(结果保留2位小数);

2)由以上统计数据填写下面列联表分析是否有的把握认为月收入以5500元为分界点对地铁票价的态度有差异

月收入不低于5500元人数

月收入低于5500元人数

合计

认为票价偏高者

认为票价合理者

合计

附:

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间中,给出下列说法:①平行于同一个平面的两条直线是平行直线;②垂直于同一条直线的两个平面是平行平面;③若平面内有不共线的三点到平面的距离相等,则;④过平面的一条斜线,有且只有一个平面与平面垂直.其中正确的是(

A. ①③B. ②④C. ①④D. ②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,准线为是抛物线上的两个动点,且满足.设线段的中点上的投影为,则的最大值是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市由甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同,甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2.某公司准备下个月从两家中的一家租一张球台开展活动,活动时间不少于15小时,也不超过40小时,设在甲家租一张球台开展活动小时的收费为元,在乙家租一张球台开展活动小时的收费为元.

1)写出的解析式;

2)选择哪家比较合算?请说明理由.

查看答案和解析>>

同步练习册答案