精英家教网 > 高中数学 > 题目详情
14.对于函数y=g(x),部分x与y的对应关系如下表:
x123456
y247518
数列{xn}满足:x1=2,且对于任意n∈N*,点(xn,xn+1)都在函数y=g(x)的图象上,则x1+x2+…+x2015=(  )
A.4054B.5046C.5075D.6047

分析 由题意易得数列是周期为4的周期数列,可得x1+x2+…+x2015=503(x1+x2+x3+x4)+x1+x2+x3,代值计算可得.

解答 解:∵数列{x n }满足x1=2,且对任意n∈N*,点(xn,xn+1)都在函数y=g(x)的图象上,∴xn+1=g(xn),
∴由图表可得x1=2,x2=f(x1)=4,x3=f(x2)=5,x4=f(x3)=1,x5=f(x4)=2,
∴数列是周期为4的周期数列,故 x1+x2+…+x2015=503(x1+x2+x3+x4)+x1+x2+x3=503×(2+4+5+1)+2+4+5=6047,
故选:D.

点评 本题考查函数和数列的关系,涉及周期性问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.式子$\frac{lo{g}_{8}27}{lo{g}_{2}3}$的值为(  )
A.1B.$\frac{3}{2}$C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在长方体ABCD-A1B1C1D1中,已知DA=DC=4,DD1=3.
(1)求BD1与平面ABCD所成的角的余弦;
(2)求异面直线A1B与B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={x|1≤x≤6,x∈N},对于A的每个非空子集,定义其“交替和”如下:把集合中的数按从大到小的顺序排列,然后从最大的数开始交替地加减各数(如:{1,2,5}的“交替和”是5-2+1=4,{6,3}的“交替和”就是6-3=3,{3}的“交替和”就是3).则集合A的所有这些“交替和”的总和为(  )
A.128B.192C.224D.256

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),当x>0时,f(x)<0,且f(1)=-2.
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)求f(x)在区间[-2,2]上的最大值;
(Ⅲ)若a≥0,解关于x的不等式f(ax2)-2f(x)<f(ax)+4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=x2+lnx的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是(  )
A.x+y-1=0B.2x-y+1=0C.x-2y+1=0D.x-y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}的公比q>0,其n前项和为Sn,若a1=1,4a3=a2a4
(Ⅰ)求公比q和a5的值;
(Ⅱ)求证:$\frac{{S}_{n}}{{a}_{n}}$<2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简:
(1)$\frac{sinθ-cosθ}{tanθ-1}$.
(2)$\sqrt{si{n}^{2}θ-si{n}^{4}θ}$,θ是第二象限角.

查看答案和解析>>

同步练习册答案