【题目】已知函数f(x)=ax+bx(其中a,b为常数,a>0且a≠1,b>0且b≠1)的图象经过点A(1,6),.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若a>b,函数,求函数g(x)在[-1,2]上的值域.
【答案】(Ⅰ)f(x)=2x+4x; (Ⅱ)[,4].
【解析】
(Ⅰ)把A、B两点的坐标代入函数的解析式,求出a、b的值,可得函数f(x)的解析式.
(Ⅱ)令t=,在[-1,2]上,t∈[,2],g(x)=h(t)=t2-t+2,利用二次函数的性质求得函数g(x)在[-1,2]上的值域.
(Ⅰ)∵函数f(x)=ax+bx(其中a,b为常数,a>0且a≠1,b>0且b≠1)
的图象经过点A(1,6),.
∴f(1)=a+b=6,且f(-1)=+=,∴a=2,b=4;或a =4,b=2.
故有f(x)=2x+4x.
(Ⅱ)若a>b,则a=4,b=2,函数=-+2,
令t=,在[-1,2]上,t∈[,2],g(x)=h(t)=t2-t+2=+∈[,4],
故函数g(x)在[-1,2]上的值域为[,4].
科目:高中数学 来源: 题型:
【题目】下列几个命题
①奇函数的图象一定通过原点
②函数是偶函数,但不是奇函数
③函数f(x)=ax﹣1+3的图象一定过定点P,则P点的坐标是(1,4)
④若f(x+1)为偶函数,则有f(x+1)=f(﹣x﹣1)
⑤若函数在R上的增函数,则实数a的取值范围为[4, 8)
其中正确的命题序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售岀8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下判断正确的是( )
A.函数y=f(x)为R上可导函数,则f′(x0)=0是x0为函数f(x)极值点的充要条件
B.命题“存在x∈R,x2+x﹣1<0”的否定是“任意x∈R,x2+x﹣1>0”
C.命题“在锐角△ABC中,有 sinA>cosB”为真命题
D.“b=0”是“函数f(x)=ax2+bx+c是偶函数”的充分不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中, 平面,底面是菱形, , , . 为与的交点, 为棱上一点,
(1)证明:平面⊥平面;
(2)若三棱锥的体积为,
求证: ∥平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等比数列{an}的前n项和为Sn , 已知a1=2,且4S1 , 3S2 , 2S3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=|2n﹣5|an , 求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: + =1(a>b>0)的两个焦点为F1、F2 , 且椭圆E过点(0, ),( ,﹣ ),点A是椭圆上位于第一象限的一点,且△AF1F2的面积S△ = .
(1)求点A的坐标;
(2)过点B(3,0)的直线l与椭圆E相交于点P、Q,直线AP、AQ分别与x轴相交于点M、N,点C( ,0),证明:|CM||CN|为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,设倾斜角为α的直线L: (T为参数)与曲线C: (φ为参数)相交于不同的两点A,B.
(1)若α= ,若以坐标原点为极点,x轴的正半轴为极轴,求直线AB的极坐标方程;
(2)若直线的斜率为 ,点P(2, ),求|PA||PB|的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com