精英家教网 > 高中数学 > 题目详情
12.函数$y={log_2}(5-4x-{x^2})$的递增区间是(  )
A.(-∞,2]B.(-5,-2]C.[-2,1]D.[1,+∞)

分析 令t=5-4x-x2>0,求得函数的定义域,再根据复合函数的单调性,本题即求函数t在(-5,1)上的增区间,再利用二次函数的性质得出结论.

解答 解:函数$y={log_2}(5-4x-{x^2})$,令t=5-4x-x2>0,求得-5<x<1,可得函数的定义域为(-5,1),y=log2t.
故本题即求函数t在(-5,1)上的增区间.
再利用二次函数的性质可得函数t在(-5,1)上的增区间为(-5,-2],
故选:B.

点评 本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.一个几何体的三视图如图所示,其正视图、侧视图、俯视图均为直角三角形,且面积分别为$\frac{3}{2}$,3,1,则该几何体外接球的表面积为14π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过双曲线$\frac{x^2}{25}-\frac{y^2}{4}$=1的右顶点且离心率为$\frac{3}{5}$.
(1)求C的方程;
(2)求过点(3,0)且斜率为$\frac{4}{5}$的直线被C所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在四棱锥E-ABCD中,底面ABCD为梯形,AB∥CD,AB=2CD,M为AE的中点,设E-ABCD的体积为V,那么三棱锥M-EBC的体积为(  )
A.$\frac{1}{5}V$B.$\frac{2}{5}V$C.$\frac{1}{3}V$D.$\frac{2}{3}V$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x,y∈R,a>1,b>1,若ax=by=2,a+b=4,则$\frac{1}{x}$+$\frac{1}{y}$的最大值为(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.对任意非零实数a、b,定义一种运算:a?b,其结果y=a?b的值由如图确定,则$({{{log}_2}8})?{({\frac{1}{2}})^{-2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列各组函数中,表示同一函数的是(  )
A.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$B.f(x)=2x,g(x)=2(x+1)
C.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2D.f(x)=$\frac{{x}^{2}+1}{x+1}$,g(x)=x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.椭圆4x2+9y2=36的焦点坐标是(  )
A.(0,±3)B.(0,±$\sqrt{5}$)C.(±3,0)D.(±$\sqrt{5}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),(x>0)}\\{{2}^{-x}-1,(x≤0)}\end{array}\right.$,则f[f(-1)]=1;若f(x0)<1,则x0的取值范围是-1≤x0<1.

查看答案和解析>>

同步练习册答案