如图,四面体中,、分别是、的中点,
(Ⅰ)求证:平面;
(Ⅱ)求二面角的正切值;
(Ⅲ)求点到平面的距离.
(Ⅰ)详见解析;(Ⅱ);(Ⅲ).
解析试题分析:(1)由题意可知,为等腰三角形,是边上的中线,所以,再由已知条件算出的三条边长,由此根据勾股定理,可证,从而得证平面;(2)作于F,连AF,由(1)知, 故,所以 ,则 是二面角的平面角,利用平面几何知识即可算出其正切值;(3)设点E到平面ACD的距离为因为,所以,从而求出.也可以点为原点,建立空间直角坐标系,写出各个点的坐标,利用利用空间向量方法,求解各个小题,详见解析.
试题解析:(Ⅰ)证明:连结OC
在中,由已知可得而
即
平面
(Ⅱ)解: 作于F,连AF
由(1)知, 故
, 是二面角的平面角,
易知,.
即所求二面角的正切值为
(Ⅲ)解:设点E到平面ACD的距离为
在中,
而
点E到平面ACD的距离为
方法二:(Ⅰ)同方法一.
(Ⅱ)解:以O为原点,如图建立空间直角坐标系,则
(Ⅲ)解:设平面ACD的法向量为则
令得是平面ACD的一个法向量,又
点E到平面ACD的距离.
考点:本题考查的知识点是空间直线与平面垂直的判定,空间点到平面的距离,二面角的平面角,其中(I)的关键是熟练掌握空间线线垂直与线面垂直之间的转化,(II)(III)的关键是建立空间坐标系,利用向量法解决空间距离和夹角问题.
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角。
(1)求证:平面A1B1C⊥平面B1BCC1;
(2)求二面角A—B1C—B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知四棱锥P-ABCD的底面为直角梯形,AD∥BC,∠BCD=900,PA=PB,PC=PD.
(I) 试判断直线CD与平面PAD是否垂直,并简述理由;
(II)求证:平面PAB⊥平面ABCD;
(III)如果CD=AD+BC,二面角P-CB-A等于600,求二面角P-CD-A的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中点,点E在棱BB1上运动.
(Ⅰ)证明:AD⊥C1E;
(Ⅱ)当异面直线AC,C1E 所成的角为60°时,求三棱锥C1-A1B1E的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D—PQ—C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com