精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在(-∞,+∞)上的偶函数,当x∈(-∞,0)时,f(x)=
1
x
-x4,则当x∈(0,+∞)时,f(x)=
 
考点:函数奇偶性的性质
专题:计算题,函数的性质及应用
分析:由函数的奇偶性解函数的解析式,步骤是固定的.
解答: 解:当x∈(0,+∞)时,-x∈(-∞,0),
又∵函数f(x)是定义在(-∞,+∞)上的偶函数,
∴f(x)=f(-x)=
1
-x
-
1
(-x)4
=-
1
x
-x4
故答案为:f(x)=-
1
x
-x4
点评:本题考查了借助函数的奇偶性求解函数的解析式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,以F2为圆心,OF2(O为椭圆中心)为半径作圆F2,若它与椭圆的一个交点为M,且MF1恰好为圆F2的一条切线,则椭圆的离心率为(  )
A、
3
-1
B、2-
3
C、
2
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2ax-
b
x
+lnx.
(Ⅰ)当b=a时,若f(x)在(0,+∞)上是单调函数,求a的取值范围.
(Ⅱ)若f(x)在x=m,x=n(m<n)处取得极值,若方程f(x)=c在(0,2n]上有唯一解,则c的取值范围为 {x|x<x0或s≤x<t},求t-s的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列各组函数是同一函数的是 (  )
f(x)=
-2x3
g(x)=x
-2x
;  
②f(x)=x2-2x-1与g(t)=t2-2t-1;
③f(x)=x0g(x)=
1
x0
;          
④f(x)=|x|与g(x)=(
x
)2
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ax3-bx2+(2-b)x+1(a,b是实数,a≠0)在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.
(1)求证:0<a<2b<3a:
(2)若函数g(x)=f′(x)-2+a-2b.设g(x)的零点为α,β,求|α-β|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的偶函数,它在[0,+∞)上为增函数,且f(
1
3
)=0,则不等式f(log8x)>0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果执行如图的程序框图,若输入n=6,m=4,那么输出的p等于(  )
A、720B、360
C、240D、120

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,函数y=f(x)的图象为折线ABC,设f1(x)=f(x),fn+1(x)=f[fn(x)],n∈n*,则函数y=f4(x)的图象为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

设α∈{-1,1,
1
2
,3}
,则使函数y=xα的定义域为R且为奇函数的所有α的值为(  )
A、-1,1,3
B、
1
2
,1
C、-1,3
D、1,3

查看答案和解析>>

同步练习册答案