精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在三棱柱ABCA1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABCFF1分别是ACA1C1的中点.

求证:(1)平面AB1F1平面C1BF

(2)平面AB1F1⊥平面ACC1A1.

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(1)要证,只需证,只需证,而四边形、四边形皆为平行四边形,所以得证;(2)要证,只需证,只需证,其中易知可得A1B1C1为正三角形可得,从而得证.

试题解析:(1)连接,在三棱柱中,由为棱的中点,所以,四边形是平行四边形,所以,,.又在矩形中可得,, ,则,,所以

2)因为,所以,又因为A1B1C1为正三角形, 的中点,所以,又,所以,因为,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列 满足 是数列 的前 项和.
(1)求数列 的通项公式
(2)令 ,求数列 的前 项和 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,且圆心在直线上.

Ⅰ)求此圆的方程

(Ⅱ)求与直线垂直且与圆相切的直线方程.

(Ⅲ)若点为圆上任意点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABCA1A=AB=AC=2,A1C1=1,.

(1)证明:BCA1D

(2)求二面角A-CC1-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数(其中)的部分图象如图所示,为了得到的图象,只要将的图象

A. 先向右平移个单位长度,再把所得各点的横坐标伸长到原来的倍,纵坐标不变

B. 先向右平移个单位长度,再把所得各点的横坐标伸长到原来的倍,纵坐标不变

C. 先向左平移个单位长度 ,再把所得各点的横坐标缩短到原来的倍,纵坐标不变

D. 先向左平移个单位长度, 再把所得各点的横坐标缩短到原来的倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市一家庭今年一月份、二月份和三月份煤气用量和支付费用如下表所示:

月份

用气量(立方米)

煤气费()

1

4

4.00

2

25

14.00

3

35

19.00

该市煤气收费的方法是:煤气费=基本费+超额费+保险费.

若每月用气量不超过最低额度A(A>4)立方米时,只付基本费3元和每户每月定额保险费C(0<C≤5)元;若用气量超过A立方米时,超过部分每立方米付B元.

(1)根据上面的表格求ABC的值;

(2)记该家庭第四月份用气为x立方米,求应交的煤气费y元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球

)试问:一共有多少种不同的结果?请列出所有可能的结果;

)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2017年8月18日某省x个监测点数据统计如下:

空气污染指数(单位:μg/m3)

[0,50]

(50,100]

(100,150]

(150,200]

监测点个数

15

40

y

10

(1)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;

(2)在空气污染指数分别为50~100和150~200的监测点中,用分层抽样的方法抽取5个监测点,从中任意选取2个监测点,事件A两个都为良发生的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱.

(1)求证:平面

(2)求证:平面.

查看答案和解析>>

同步练习册答案