精英家教网 > 高中数学 > 题目详情

【题目】,若时均有,则______.

【答案】

【解析】

a1时,不等式不可能恒成立;当a1,若对任意的x0时均有,则构造函数y1=(a1x1y2x23ax1,与x轴交于同一点,代入可得答案.

a1时,代入题中不等式得明显不恒成立,舍.

a1,构造函数y1=(a1x1y2x23ax1,它们都过定点P0,﹣1).

在函数y1=(a1x1中,令y0,得M0);

在函数y2x23ax1,∵x0时,均有成立

又∵y2x23ax1开口向上,随着的增加,y20成立,所以a10.

y2x23ax1显然过点M0),代入得:(23a10

解之得:aa0(舍去).

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】写出下列命题的否定,并判断所得命题的真假.

1

2q:所有的正方形都是矩形;

3

4s:至少有一个实数,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(  )(参考数据:sin15°=0.2588,sin7.5°=0.1305)

A. 12B. 24C. 48D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切于点,圆心轴上.

(1)求圆的方程;

(2)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记的面积分别是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(  )(参考数据:sin15°=0.2588,sin7.5°=0.1305)

A. 12B. 24C. 48D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点且离心率为.

(1)求椭圆C的方程;

(2)是否存在过点的直线与椭圆C相交于A,B两点,且满足.若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(  )(参考数据:sin15°=0.2588,sin7.5°=0.1305)

A. 12B. 24C. 48D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知是直线上的动点,点的坐标是,过的直线垂直,并且与线段的垂直平分线相交于点 .

(1)求点的轨迹的方程;

(2)设曲线上的动点关于轴的对称点为,点的坐标为,直线与曲线的另一个交点为(不重合),是否存在一个定点,使得三点共线?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒组成.已知半球的直径是6 cm,圆柱筒高为2 cm.

1这种“浮球”的体积是多少cm3结果精确到0.1?

2要在2 500个这样的“浮球”表面涂一层胶,如果每平方米需要涂胶100克,那么共需胶多少克?

查看答案和解析>>

同步练习册答案