精英家教网 > 高中数学 > 题目详情

【题目】某地区实施光盘行动以后,某自助啤酒吧也制定了自己的行动计划,进店的每一位客人需预交元,啤酒根据需要自己用量杯量取,结账时,根据每桌剩余酒量,按一定倍率收费(如下表),每桌剩余酒量不足升的,按升计算(如剩余升,记为剩余).例如:结账时,某桌剩余酒量恰好为升,则该桌的每位客人还应付.统计表明饮酒量与人数有很强的线性相关关系,下面是随机采集的组数据(其中表示饮酒人数,()表示饮酒量):,,,,.

剩余酒量(单位:升)

升以上(含升)

结账时的倍率

1)求由这组数据得到的关于的回归直线方程;

2)小王约了位朋友坐在一桌饮酒,小王及朋友用量杯共量取了升啤酒,这时,酒吧服务生对小王说,根据他的经验,小王和朋友量取的啤酒可能喝不完,可以考虑再邀请位或位朋友一起来饮酒,会更划算.试向小王是否该接受服务生的建议?

参考数据:回归直线的方程是,其中,.

【答案】1;(2)接受

【解析】

1)计算出,,结合所给数据,计算出,进而求得,即可求得答案;

2)小王和位朋友共人大约需要饮酒升,若不再邀请人,则剩余酒量升,酒吧记为剩余升,预计需要支付元,结合已知,即可求得答案.

1,,

,

,

回归直线方程为.

2)小王和位朋友共人大约需要饮酒升,

若不再邀请人,则剩余酒量升,酒吧记为剩余升,

预计需要支付元;

若再邀请人,大约需饮酒升,剩余酒量升,

酒吧记为剩余升,预计支付元;

若再邀请人,大约需饮酒升,剩余酒量升,

酒吧记为剩余升,预计支付.

应该接受建议,且再邀请位朋友更划算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线的焦点是是曲线上不同两点,且存在实数使得,曲线在点处的两条切线相交于点

1)求点的轨迹方程;

2)点轴上,以为直径的圆与的另一交点恰好是的中点,当时,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)设函数,若,且上恒成立,求的取值范围;

3)设函数,若,且上存在零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将三棱锥拼接得到如图所示的多面体,其中分别为的中点,.

1)当点在直线上时,证明:平面

2)若均为面积为的等边三角形,求该多面体体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,底面是边长为4的等边三角形,的中点.

1)证明:平面.

2)若是等边三角形,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,己知抛物线,直线交抛物线于两点,是抛物线外一点,连接分别交地物线于点,且.

1)若,求点的轨迹方程.

2)若,且平行x轴,求面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为研究学生的身体素质与体育锻炼时间的关系,对该校300名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟).

平均每天锻炼的时间/分钟

总人数

34

51

59

66

65

25

将学生日均体育锻炼时间在的学生评价为锻炼达标”.

1)请根据上述表格中的统计数据填写下面的列联表;

锻炼不达标

锻炼达标

合计

40

160

合计

2)通过计算判断,是否能在犯错误的概率不超过0.05的前提下认为锻炼达标与性别有关?

参考公式:,其中.

临界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)若不等式时恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

1)当时,求函数在点处的切线方程;

2)定义在R上的函数满足,当时,。若存在满足不等式是函数的一个零点,求实数a的取值范围。

查看答案和解析>>

同步练习册答案