精英家教网 > 高中数学 > 题目详情

【题目】下列说法:

①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小;

②百分率是频率,但不是概率;

③频率是不能脱离试验次数的实验值,而概率是具有确定性的不依赖于试验次数的理论值;

④频率是概率的近似值,概率是频率的稳定值.

其中正确的是______________.

【答案】①③④

【解析】

根据频率与概率的概念与区别,依次判断各选项即可.

对于①,由频率和概率概念: 频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小.可知①正确;

对于②,概率也可以用百分率表示,故②错误.

对于③,频率与试验次数相关,而概率与试验次数无关,所以③正确;

对于④,对于不同批次的试验,频率不一定相同,但概率相同,因而频率是概率的近似值,概率是频率的稳定值,所以④正确.

由概率和频率的定义中可知①③④正确.

故答案为: ①③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列的首项为,前项和为,若对任意的,均有是常数且)成立,则称数列为“数列”.

(1)若数列为“数列”,求数列的通项公式;

(2)是否存在数列既是“数列”,也是“数列”?若存在,求出符合条件的数列的通项公式及对应的的值;若不存在,请说明理由;

(3)若数列为“数列”, ,设,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某观测站在目标的南偏西方向,从出发有一条南偏东走向的公路,在处测得与相距的公路处有一个人正沿着此公路向走去,走到达,此时测得距离为,若此人必须在分钟内从处到达处,则此人的最小速度为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆过点,离心率为.分别是椭圆的上、下顶点,是椭圆上异于的一点.

1)求椭圆的方程;

2)若点在直线上,且,求的面积;

3)过点作斜率为的直线分别交椭圆于另一点,交轴于点,且点在线段上(不包括端点),直线与直线交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1234567899个数字中任取两个数,分别有下列事件:

①恰有一个是奇数和恰有一个是偶数;

②至少有一个是奇数和两个数都是奇数;

③至少有一个是奇数和两个数都是偶数;

④至少有一个是奇数和至少有一个是偶数.

其中,为互斥事件的是(

A.B.②④C.D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义域为R的奇函数,当x<0时,.

(1)求f(2)的值;

(2)用定义法判断yf(x)在区间(-∞,0)上的单调性.

(3)求的解析式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】绵阳是党中央、国务院批准建设的中国唯一的科技城,重要的国防科研和电子工业生产基地,市某科研单位在研发过程中发现了一种新合金材料,由大数据测得该产品的性能指标值值越大产品的性能越好)与这种新合金材料的含量(单位:克)的关系为:当时,的二次函数;当时,测得部分数据如表:

(单位:克)

1)求关于的函数关系式

2)求该新合金材料的含量为何值时产品的性能达到最佳.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1.

(1)求数列{an},{bn}的通项公式;

(2)设数列{cn}满足,数列{cn}的前n项和为Tn,若不等式(-1)nλ<Tn对一切n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案